
Fibrational views on
typing, proving, and parsing

Noam Zeilberger, Ecole Polytechnique

special session on Categorical Type Theory
@ MFPS XXXVII (30 Aug - 3 Sep 2021)

1

1. Type systems as functors

2

Motivations

For example, it is problematic for "extrinsic" features
like subtyping and intersection types.

When looking at type theory via category theory, it is
tempting to model type systems as categories.

A beautiful idea when it works...but sometimes it doesn't!

More fundamentally, the category model collapses

 terms = judgments = derivations.

In type theory these are important distinctions!

3

Intrinsic vs extrinsic typing

J. C. Reynolds, "The Meaning of Types" (2000):

There are two very different ways of giving denotational semantics
to a programming language (or other formal language) with a
nontrivial type system. In an intrinsic semantics, only phrases
that satisfy typing judgements have meanings. Indeed, meanings are
assigned to the typing judgements, rather than to the phrases
themselves, so that a phrase that satisfies several judgements
will have several meanings.

In contrast, in an extrinsic semantics, the meaning of each phrase
is the same as it would be in a untyped language, regardless of
its typing properties. In this view, a typing judgement is an
assertion that the meaning of a phrase possesses some property.

4

An intrinsic bias

Modelling type systems by categories has a bias
towards the intrinsic view of typing.

Indeed, every morphism of a category could be
said to have an intrinsic type f : dom(f) → cod(f).

What would it mean for f to possess other types?

5

Subtyping and polymorphism

Certain typing rules are correspondingly difficult
to interpret under a naive categorical reading:

Γ ⊢ t : R R ≤ S
Γ ⊢ t : S

Γ ⊢ t : R₁ Γ ⊢ t : R₂
Γ ⊢ t : R₁ ∧ R₂

(subsumption)

(∧-introduction)

6

An extrinsic model

Some (e.g., Reynolds) have managed to construct intrinsic
categorical models of subtyping and intersection types
backed by non-trivial coherence theorems, whose goal
is to show that any two derivations of the same typing
judgment are assigned the same meaning.

We advocate a different approach, in a sense more naive,
which takes the extrinsic view more seriously from a
categorical perspective. In a word, the key is simply
to replace categories by functors.

7

Functors as type systems

Every functor p : 𝓓 → 𝓣 induces an abstract type system:

* the "terms" are morphisms of 𝓣;
* the "types" are objects of 𝓓;
* the "judgments" are triples (R,f,S) of a term and a
 pair of types such that p(R) = dom(f) and p(S) = cod(f);
* the "derivations" of judgments (R,f,S) are morphisms α
 of 𝓓 such that dom(α) = R, cod(α) = S, and p(α) = f.

Observe that:
* one term can be involved in many different judgments!
* one judgment can have many different derivations!

8

Type refinement systems

In fact, p : 𝓓 → 𝓣 induces an abstract type refinement
system, in the sense that objects of 𝓣 may also be
considered as types, refined by objects of 𝓓. Adapting
notation from Pfenning et al., we write R ⊏ A to mean
that p(R) = A.

Modelling type refinement systems this way as functors
enables us to give first-class mathematical status to
extrinsic concepts such as subtyping and intersection types.

Conversely, viewing functors as type systems allows us to
import some at times helpful intuitions from logic.

9

Typing rules for a functor

Observe that the following typing rules are semantically
valid for any functor p : 𝓓 → 𝓣 viewed as an abstract
type (refinement) system.

(R,f,S) (S,g,T)
(R,fg,T)

S ⊏ A
(S,idA,S)

Validity of the rules reduces to functoriality of p.

10

Subtyping for a functor

Any functor p : 𝓓 → 𝓣 comes equipped with an abstract
subtyping relation, defined on refinements of the same
type. Given R ⊏ A and S ⊏ A, a subtyping derivation of
R ≤A S is just a derivation of (R,idA,S).

Observe that the covariant and contravariant subsumption
rules are semantically valid under this interpretation.

(R,f,S) S ≤B S'
(R,f,S')

R' ≤A R (R,f,S)
(R',f,S)

(where f : A → B)

11

Intersection types for a functor

A functor p : 𝓓 → 𝓣 has (binary) intersection types
if for every pair of types S₁ ⊏ A and S₂ ⊏ A refining
the same type, there is a type S₁∧S₂ ⊏ A together with a
pair of derivations π₁ : S₁∧S₂ ≤A S₁ and π₂ : S₁∧S₂ ≤A S₁,
such that for any pair of derivations β₁ : (R,f,S₁) and
β₂ : (R,f,S₂), there exists a unique derivation
β' : (R,f,S₁∧S₂) with βᵢ = β'πᵢ for i ∈ {1,2}.

[This generalizes the definition from fibred category
theory of when a fibration q : 𝓔 → 𝓑 has "fibred
finite products".]

Der(R,f,S₁∧S₂) ≅ Der(R,f,S₁) × Der(R,f,S₂)12

Two powerful type constructors

A functor p : 𝓓 → 𝓣 has push and pull types if:

* for every type R ⊏ A and term f : A → B, there is a
 type push(f,R) ⊏ B and a derivation α : (R,f,push(f,R))
 such that for any derivation β : (R,fg,S) there is a
 unique derivation β' : (push(f,R),g,S) with β = αβ'.

* for every term g : A → B and type S ⊏ B, there is a
 type pull(g,S) ⊏ A and a derivation α : (pull(g,R),g,S)
 such that for any derivation β : (R,fg,S) there is a
 unique derivation β' : (R,f,pull(g,S)) with β = β'α.

[= "is a bifibration"]

Der(push(f,R),g,S) ≅ Der(R,fg,S) ≅ Der(R,f,pull(g,R))13

Models

A model of a type refinement system p : 𝓓 → 𝓣 inside
another type refinement system q : 𝓔 → 𝓑 is a pair of
functors F : 𝓣 → 𝓑 and G : 𝓓 → 𝓔 such that Gq = pF.

𝓓

𝓣 𝓑

𝓔

p q

F

G

For example, a model of p in q : Subset → Set interprets
terms as functions, type refinements as subsets, and
derivations as valid inclusions. A model in Psh → Cat
interprets terms as functors, type refinements as
presheaves, and derivations as natural transformations.

14

A brief bibliography

Papers by M&Z:

* Type refinement and monoidal closed bifibrations, arXiv:1310.0263

* Functors are type refinement systems, POPL 2015

* A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine, LICS 2016

* An Isbell duality theorem for type refinement systems, MSCS 28:6, 2017

See also OPLSS 2016 lecture notes by Z.

See also work by Mazza (habilitation, 2017) and
Mazza-Pellissier-Vial (POPL 2018) on (non-idempotent)
intersection type systems.

15

Outlook

I believe that modelling type systems as functors rather
than as categories is a better starting point for
understanding what type systems do mathematically.

But clearly it is just a starting point.

One of our original goals in developing this fibrational
framework was to have a language for describing the
machinery of type inference and proof search. This is
still a long-term aim...

16

2. (Bi)fibrations of proofs

17

Categorical logic

It is well-recognized since Lawvere that existential and
universal quantification in predicate logic implicitly
involve a fibrational structure.

It is less widely appreciated that the connectives of
linear logic may also be analyzed in fibrational terms.

To motivate this, let's review the connection between
monoidal categories and representable multicategories,
which (as noticed by Hermida) may in turn be seen as
covariant fibrations of multicategories...

18

Monoidal categories

A category C equipped with:

• a bifunctor ⊗ : C × C → C and an object I ∈ C

• three natural isomorphisms

 αA,B,C : (A ⊗ B) ⊗ C ⥲ A ⊗ (B ⊗ C)

• satisfying some coherence equations...

 λA : I ⊗ A ⥲ A

ρA : A ⊗ I ⥲ A

19

...such as the pentagon equation:

((A ⊗ B) ⊗ C) ⊗ D

(A ⊗ B) ⊗ (C ⊗ D)

(A ⊗ (B ⊗ C)) ⊗ D

A ⊗ ((B ⊗ C) ⊗ D)

A ⊗ (B ⊗ (C ⊗ D))

αA⊗B,C,D

αA,B,C⊗D

αA,B,C ⊗ D

αA,B⊗C,D

A ⊗ αB,C,D

Thm (Mac Lane 1963, Kelly 1964): "all diagrams commute".

Monoidal categories

20

Ω → A Γ , A , Δ → C

Γ , Ω , Δ → C

f g

cutΓ-Δ(f,g)=

Multicategories

Recall that a multicategory (Lambek 1969) is like a
category except that morphisms can have multiple inputs
f : A₁,...,Aₙ → B, and composition has the form of the
cut-rule in intuitionistic linear logic

subject to some equations omitted here.

g∘ᵢf where i = |Γ| =

21

Representable multicategories

A multicategory is said to be representable if for any
list of objects Ω there is an object ⊗Ω and a multimap
mΩ : Ω → ⊗Ω such that for any multimap g : Γ,Ω,Δ → C
there exists a unique multimap g' : Γ,⊗Ω,Δ → C with g =
g'∘ᵢmΩ. Note this is equivalent to having tensors and
unit object, defined as above for Ω = A,B and Ω = ·.

Thm (Lambek 1969, Hermida 2000): "monoidal categories
and representable multicategories are equivalent".

 Hom(Γ,⊗Ω,Δ;C) ≅ Hom(Γ,Ω,Δ;C)
Hom(Γ,A⊗B,Δ;C) ≅ Hom(Γ,A,B,Δ;C)
 Hom(Γ,I,Δ;C) ≅ Hom(Γ,Δ;C)22

Fibrations of multicategories

The notion of (bi)fibration may be extended to functors
of multicategories in different ways. Hermida's (2004)
definition of a covariant fibration of multicategories
p : 𝓔 → 𝓑 may be expressed as follows, in the (suitably
adapted) language of type refinement systems:

* for any list of types Ω = (R₁ ⊏ A₁,...,Rₙ ⊏ Aₙ) and
 term f : A₁,...,Aₙ → B, there is a type push(f,Ω) ⊏ B
 and a derivation α : (Ω,f,push(f,Ω)) such that for any
 derivation β : ((Γ,Ω,Δ),g∘ᵢf,S) there is a unique
 derivation β' : ((Γ,push(f,R),Δ),g,S) with β = β'∘ᵢα.

Der((Γ,push(f,Ω),Δ),g,S) ≅ Der((Γ,Ω,Δ),g∘ᵢf,S)23

Fibrations of multicategories

Let 𝟙 be the terminal multicategory defined as having a
single object * and with a single morphism n : *ⁿ → *
for every n ∈ ℕ. Observe that for any multicategory 𝓜
there is a unique functor of multicategories ! : 𝓜 → 𝟙.

Proposition (Hermida): 𝓜 is representable iff ! : 𝓜 → 𝟙
is a covariant fibration.

Proof: take ⊗Ω := push(n,Ω) where n = |Ω|.

Fibrations of multicategories

Let 𝟙 be the terminal multicategory defined as having a
single object * and with a single morphism n : *ⁿ → *
for every n ∈ ℕ. Observe that for any multicategory 𝓜
there is a unique functor of multicategories ! : 𝓜 → 𝟙.

Proposition (Hermida): 𝓜 is representable iff ! : 𝓜 → 𝟙
is a covariant fibration.

Proof: take ⊗Ω := push(n,Ω) where n = |Ω|.

∴ monoidal categories ≅ fibrations over 𝟙!
(covariant) (of multicategories)

24

Bifibrations of proofs

The story extends to classical MLL: by introducing an
appropriate notion of bifibration of polycategories,
one obtains an equivalence between *-autonomous
categories and bifibrations over the terminal
polycategory. For details, see Nicolas Blanco's talk
from MFPS 2020 and our joint paper.

In another direction, one can replace 𝟙 by something
more interesting to express a richer algebra of
contexts. A programme for encoding substructural and
modal logics this way based on bifibrations of
2-multicategories was proposed by Licata, Riley, and
Shulman, see their paper at FSCD 2017.

25

3. Parsing as a lifting problem
(work-in-progress w/PAM)

26

An old analogy: parsing ~ typing

(1961)

27

First steps

Any context-free grammar G over an alphabet Σ can be
encoded by a functor of multicategories 𝓓[G] → 𝓦[Σ]:

* 𝓦[Σ] is the operad of spliced words, a one-object
 multicategory with an operation w₀-w₁-...-wₙ : *ⁿ → *
 for every (n+1)-tuple of words in Σ*.

* 𝓓[G] is the freely generated multicategory over the
 non-terminals with an operation r : R₁,...,Rₙ → R for
 every production r in G of the form R → w₀R₁w₁...Rₙwₙ.

* 𝓓[G] → 𝓦[Σ] sends R ↦ * and r ↦ (w₀-w₁-...-wₙ).
(cf. RFC Walters, "A note on context-free languages", JPAA, 1989)

28

CFGs as type refinement systems

The functor 𝓓[G] → 𝓦[Σ] is not anything like a
bifibration. Still, we can use the fibrational
language of type refinement systems to analyze
meaningful questions about the grammar, such as:

1. What is the language associated to a non-terminal?

2. What is the parse matrix associated to a word?

29

The language of a grammar

Any functor p : 𝓓 → 𝓣 has a canonical model in Subset → Set:

𝓓

𝓣 Set

Subset

elts

lang

where elts sends every type A in 𝓣 to the set of constants
{ c | c : A }, and lang sends every type R ⊏ A in 𝓓 to the
subset { p(α) | α : R } ⊆ elts(A). For 𝓓[G] → 𝓦[Σ], this
recovers the language lang(R) ⊆ Σ* of each non-terminal.

p

(of multicategories)

30

The parse matrix of a grammar

Any functor p : 𝓓 → 𝓣 may be faithfully encoded by a lax
functor ∂p : 𝓣 → Span(Set) into the (weak) multicategory
whose objects are sets and whose multimaps are multispans:

X₁ ... Xₙ Y

Z

(Going from ∂p to p is a variant "Grothendieck construction".)

For 𝓓[G] → 𝓦[Σ], ∂p sends * to the set of non-terminals,
and any word w to its set of parse trees equipped with the
root-labelling function. (This generalizes to spliced words.)

: X₁,...,Xₙ → Y

31

4. Conclusions

32

Typing, proving, parsing...

Fibrational views on deductive systems:

* Naturally represented as functors p : 𝓓 → 𝓣

* Bifibrational connectives allow for expressing rich
 logical and algebraic structures...

* ...but not everything is a fibration!

* There are a wealth of techniques for type inference,
 proof search, parsing, etc., that deserve deeper analysis
 and are a potential source of beautiful mathematics.

33

