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Part I

Questions
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Some old questions and old answers

Q: What are the meanings of proofs in classical logic?

A [Kolmogorov, Glivenko-Kuroda, Gödel-Gentzen, . . . ]:
Derived by ¬¬ translations into intuitionistic logic.

Q: What are the meanings of programs with effects?
A [Reynolds, Steele-Sussman, Plotkin, . . . . . . ]:

Derived by CPS translations into lambda calculus.
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Refining these answers. . .

Of course As beg more Qs: meaning of proofs/programs in IL/λC?

(Yes, answers are well-known, but we can also dodge the question!. . . )

Idea: directly study canonical forms in image of translations, e.g., as. . .

strategies (game semantics)

focusing proofs (proof theory)

Polarity is a guide for describing these canonical forms
Internalized as polarized logic
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. . . leading to another question. . .

Polarity (¬¬-translation, CPS) plays a
role in constructivizing classical logic.

Does it have a role in constructive logic?1

1Cf. Intuitionistic focusing, Benton’s LNL logic, Watkins’ CLF, Levy’s CBPV, ...
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. . . and another

Delimited continuations greatly widen
the scope of continuation semantics.2

What is their logical structure?

2Cf. Felleisen ’88, Danvy & Filinski ’90, Filinski ’94, Shan Ph.D., . . .
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Towards positive answers

Key (simple) idea: study polarity with more than one answer type

Introduces asymmetry between positive and negative polarity

Yields different “¬¬”-interpretations of intuitionistic logic

Positive answer types give rise to monadic effects

Paper works out this idea guided mainly by proof-theoretic principles

pros: concrete, close connection between syntax and semantics

cons: perhaps not so transparent, very partial picture
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Part II

Review of Classical Polarity
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The basic type distinction

P
defined by truth
(i.e., datatypes)

vs.
N

defined by falsehood
(e.g., records, classes, etc.)
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The basic judgments

Interpretation
Logical Operational

[P] “P obvious” value of type P
•P “P false” continuation accepting P
N “N true” value of type N

[•N] “N absurd” continuation accepting N
# “contradiction” well-typed expression
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Syntax/Semantics

How to explain the meanings of the judgments? Different approaches. . .

definition-by-canonical-forms [most precise, primary in paper]

definition-by-translation [shortly. . . ]

definition-by-handwaving [now!]
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Intuition

“direct proof of P”
[P]

“direct proof of P” −→ #

•P

“direct refutation of N” −→ #

N
“direct refutation of N”

[•N]

[P] •P
#

N [•N]

#
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Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P+ and N− [next slide], translate judgments J∗ by:

[P]∗ = P+ •P∗ = P+ ⊃#

N∗ = N− ⊃# [•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

25 / 59



Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P+ and N− [next slide], translate judgments J∗ by:

[P]∗ = P+

•P∗ = P+ ⊃#

N∗ = N− ⊃# [•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

26 / 59



Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P+ and N− [next slide], translate judgments J∗ by:

[P]∗ = P+ •P∗ = P+ ⊃#

N∗ = N− ⊃# [•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

27 / 59



Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P+ and N− [next slide], translate judgments J∗ by:

[P]∗ = P+ •P∗ = P+ ⊃#

N∗ = N− ⊃#

[•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

28 / 59



Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P+ and N− [next slide], translate judgments J∗ by:

[P]∗ = P+ •P∗ = P+ ⊃#

N∗ = N− ⊃# [•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

29 / 59



Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P+ and N− [next slide], translate judgments J∗ by:

[P]∗ = P+ •P∗ = P+ ⊃#

N∗ = N− ⊃# [•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

30 / 59



Definition by translation

Some connectives:

1+ = T = ⊥− 0+ = F = >−

(P1 ⊗ P2)+ = P+

1 ∧ P+

2 (N1ON2)− = N−

1 ∧ N−

2

(P1 ⊕ P2)+ = P+

1 ∨ P+

2 (N1NN2)− = N−

1 ∨ N−

2

(N⊥)+ = N− (P → N)− = P+ ∧ N−

(↓N)+ = N− ⊃# (↑P)− = P+ ⊃#
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The classical connection

Define “polarity-collapsing” translation:

|⊗| = |N| = ∧ |⊕| = |O| = ∨ |→| = ⊃ |−⊥| = ¬ | ↓| = | ↑| = ·

Proposition

`c |N| iff `i N∗ `c ¬|P | iff `i (•P)∗

Punchline: different polarizations yield different ¬¬-translations
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Definition by canonical forms

Contexts ∆, Γ ::= · | ∆1,∆2 | N | •P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆ 
 [P] Γ ` ∆

Γ ` [P]

∆ 
 [P] −→ Γ,∆ ` #

Γ ` •P

∆ 
 [•N] −→ Γ,∆ ` #

Γ ` N
∆ 
 [•N] Γ ` ∆

Γ ` [•N]

N ∈ Γ Γ ` [•N]

Γ ` #

•P ∈ Γ Γ ` [P]

Γ ` # Γ ` ·

Γ ` ∆1 Γ ` ∆2

Γ ` ∆1,∆2
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Definition by canonical forms

Contexts ∆, Γ ::= · | ∆1,∆2 | N | •P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p σ

V+
p[σ]

p 7→ Ep

K+
p 7→Ep

d 7→ Ed

V −
d 7→Ed

d σ
K −

d[σ]

v K −

E
v K−

k V+

E
k V+

σ
·
σ1 σ2

σ (σ1,σ2)
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Part III

Towards Generalized Polarity
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Symmetry

Elegant symmetry or silly redundancy?

[P] •P
N [•N]

m

[P] •P
[P]

N
•P

[•N]
N [•N]

Before giving up on our intuitions, let’s think about “contradiction” #. . .
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Credit: Randall Munroe
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From Symmetry to Asymmetry

Key (simple) idea:

# { P •A { A . P

Perfect symmetry between positive and negative broken!
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The basic judgments

Interpretation
Logical Operational

[P] “P obvious” value of type P
•P “P false” continuation accepting P
N “N true” value of type N

[•N] “N absurd” continuation accepting N
# “contradiction” well-typed expression
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Intuition

“direct proof of P”
[P]

“direct proof of P” −→ #

•P

“direct refutation of N” −→ #

N
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[P]
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Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given type translations P+ and N−, translate judgments by:

[P]∗ = P+ •P∗ = P+ ⊃#

N∗ = N− ⊃# [•N]∗ = N−

#∗ = #

(where # a distinguished logical atom)

51 / 59



Definition by translation++

Target: fragment of 2nd-order intuitionistic logic

+ “monad T ”

Given type translations P+ and N−α, translate judgments by:

[P]∗ = P+ (P1 . P2)∗ = P1
+ ⊃

T

P2
+

N∗ = ∀α.N−α ⊃

T

α [N . P]∗ = N−α[P+/α]

P∗ =

T

P+

(where “monad T ” = [∀α.α ⊃ Tα] ∧ [∀αβ.(α ⊃ Tβ) ⊃ (Tα ⊃ Tβ)])

52 / 59



Definition by translation++

Target: fragment of 2nd-order intuitionistic logic + “monad T ”

Given type translations P+ and N−α, translate judgments by:
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Definition by translation++

Type translation:

1+ = T = ⊥−α 0+ = F = >−α

(P1 ⊗ P2)+ = P+

1 ∧ P+

2 (N1ON2)−α = N−α
1 ∧ N−α

2

(P1 ⊕ P2)+ = P+

1 ∨ P+

2 (N1NN2)−α = N−α
1 ∨ N−α

2

(N�P)+ = N−α[P+/α] (P → N)−α = P+ ∧ N−α

(↓N)+ = ∀α.N−α ⊃ Tα (↑P)−α = P+ ⊃ Tα
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The intuitionistic connection

Define “polarity-collapsing” translation:

|⊗| = |N| = ∧ |⊕| = |O| = ∨ |→| = |�| = ⊃ | ↓| = | ↑| = ·

Proposition

`i |A | iff MonT `
2i A∗ for O,�-free A

Punchline: different “¬¬”-interpretations of intuitionistic logic

“Polarized IL is a restriction of a generalization of polarized CL”
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Definition by canonical forms++

Contexts ∆, Γ ::= · | ∆1,∆2 | N | P . P′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∆ 
 [P] Γ ` ∆

Γ ` [P]

∆ 
 [P] −→ Γ,∆ ` P′

Γ ` P . P′

α.∆ 
 [N] . − −→ Γ, α.∆ ` α

Γ ` N
α.∆ 
 [N] . − Γ ` ∆[P/α]

Γ ` [N] . P

N ∈ Γ Γ ` [N] . P
Γ ` P

P . P′ ∈ Γ Γ ` [P]

Γ ` .P′ Γ ` ·

Γ ` ∆1 Γ ` ∆2

Γ ` ∆1,∆2

Γ ` [P]

Γ ` P
Γ ` .P Γ ` P . P′

Γ ` P′
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Definition by canonical forms++

Contexts ∆, Γ ::= · | ∆1,∆2 | N | P1 . P2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p σ

V+
p[σ]

p 7→ Ep

K+
p 7→Ep

d 7→ Ed

V −
d 7→Ed

d σ
K −

d[σ]

v K −

E
v K−

k V+

.E
k V+

σ
·
σ1 σ2

σ (σ1,σ2)

V+

E
!V+

.E K+

E
K+$.E
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The delimited connection

Delimited control operators are already here, really!

Danvy & Filinski’s original type-and-effect system as derived rules

Connections to Asai & Kameyama ’07 and Kiselyov & Shan ’07

See paper (and Twelf code!) for a more concrete connection

Important caveat: only the first-level of the CPS hierarchy
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Inconclusions

Asymmetry in constructive logic is still not very well-understood

Continuation semantics (, semantics of callcc) deserves to be revisited

Filinski’s monadic reflection [POPL94/10] is an underappreciated idea

The CPS hierarchy (= “substructural hierarchy”?) is ripe for exploration
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