Polarity and the Logic of Delimited Continuations

Noam Zeilberger

Université Paris 7

12 July, LICS 2010

Part I

Questions

Q: What are the meanings of proofs in classical logic?

Q: What are the meanings of proofs in classical logic?

A [Kolmogorov, Glivenko-Kuroda, Gödel-Gentzen, . . .]:

Derived by ¬¬ translations into intuitionistic logic.

- Q: What are the meanings of proofs in classical logic?
- A [Kolmogorov, Glivenko-Kuroda, Gödel-Gentzen, . . .]:

 Derived by ¬¬ translations into intuitionistic logic.
- Q: What are the meanings of programs with effects?

- Q: What are the meanings of proofs in classical logic?

 A [Kolmogorov, Glivenko-Kuroda, Gödel-Gentzen, . . .]:

 Derived by ¬¬ translations into intuitionistic logic.
- Q: What are the meanings of programs with effects?
- A [Reynolds, Steele-Sussman, Plotkin,]:
 Derived by CPS translations into lambda calculus.

Refining these answers...

Of course As beg more Qs: meaning of proofs/programs in $IL/\lambda C$?

Refining these answers...

Of course As beg more Qs: meaning of proofs/programs in $IL/\lambda C$?

(Yes, answers are well-known, but we can also dodge the question!...)

Refining these answers...

Of course As beg more Qs: meaning of proofs/programs in $IL/\lambda C$?

(Yes, answers are well-known, but we can also dodge the question!...)

Idea: directly study canonical forms in image of translations, e.g., as...

- strategies (game semantics)
- focusing proofs (proof theory)

Polarity is a guide for describing these canonical forms Internalized as **polarized logic**

...leading to another question...

Polarity (¬¬-translation, CPS) plays a role in constructivizing classical logic.

Does it have a role in *constructive logic*?¹

¹Cf. Intuitionistic focusing, Benton's LNL logic, Watkins' CLF, Levy's CBPV, ...

... and another

Delimited continuations greatly widen the scope of continuation semantics.² What is their logical structure?

²Cf. Felleisen '88, Danvy & Filinski '90, Filinski '94, Shan Ph.D., ...

Towards positive answers

Key (simple) idea: study polarity with more than one answer type

- Introduces asymmetry between positive and negative polarity
- Yields different "¬¬"-interpretations of intuitionistic logic
- Positive answer types give rise to monadic effects

Paper works out this idea guided mainly by proof-theoretic principles

- pros: concrete, close connection between syntax and semantics
- cons: perhaps not so transparent, very partial picture

Part II

Review of Classical Polarity

The basic type distinction

The basic judgments

	Interpretation	
	Logical	Operational
[<i>P</i>]	"P obvious"	value of type P
• <i>P</i>	"P false"	continuation accepting P
N	"N true"	value of type N
[● <i>N</i>]	"N absurd"	continuation accepting N
#	"contradiction"	well-typed expression

How to explain the meanings of the judgments? Different approaches...

How to explain the meanings of the judgments? Different approaches. . .

• definition-by-canonical-forms [most precise, primary in paper]

How to explain the meanings of the judgments? Different approaches. . .

- definition-by-canonical-forms [most precise, primary in paper]
- definition-by-translation [shortly...]

How to explain the meanings of the judgments? Different approaches. . .

- definition-by-canonical-forms [most precise, primary in paper]
- definition-by-translation [shortly...]
- definition-by-handwaving [now!]

$$\frac{\text{"direct proof of P"}}{[P]} \qquad \frac{\text{"direct proof of P"}}{\bullet P}$$

$$\frac{\text{"direct refutation of N"}}{N} \qquad \frac{\text{"direct refutation of N"}}{[\bullet N]}$$

$$\frac{[P] \quad \bullet P}{\#} \qquad \frac{N \quad [\bullet N]}{\#}$$

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P^+ and N^- [next slide], translate judgments J^* by:

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P^+ and N^- [next slide], translate judgments J^* by:

$$[P]^* = P^+$$

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P^+ and N^- [next slide], translate judgments J^* by:

$$[P]^* = P^+$$
 $\bullet P^* = P^+ \supset \#$

(where # a distinguished logical atom)

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P^+ and N^- [next slide], translate judgments J^* by:

$$[P]^* = P^+ \qquad \bullet P^* = P^+ \supset \#$$
$$[\bullet N]^* = N^-$$

(where # a distinguished logical atom)

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P^+ and N^- [next slide], translate judgments J^* by:

$$[P]^* = P^+ \qquad \bullet P^* = P^+ \supset \#$$

$$N^* = N^- \supset \# \qquad [\bullet N]^* = N^-$$

(where # a distinguished logical atom)

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given translations P^+ and N^- [next slide], translate judgments J^* by:

$$[P]^* = P^+$$
 $\bullet P^* = P^+ \supset \#$
 $N^* = N^- \supset \#$ $[\bullet N]^* = N^-$
 $\#^* = \#$

(where # a distinguished logical atom)

Some connectives:

$$1^{+} = T = \bot^{-} \qquad 0^{+} = F = \top^{-}$$

$$(P_{1} \otimes P_{2})^{+} = P_{1}^{+} \wedge P_{2}^{+} \qquad (N_{1} \otimes N_{2})^{-} = N_{1}^{-} \wedge N_{2}^{-}$$

$$(P_{1} \oplus P_{2})^{+} = P_{1}^{+} \vee P_{2}^{+} \qquad (N_{1} \otimes N_{2})^{-} = N_{1}^{-} \vee N_{2}^{-}$$

$$(N^{\perp})^{+} = N^{-} \qquad (P \to N)^{-} = P^{+} \wedge N^{-}$$

$$(\downarrow N)^{+} = N^{-} \supset \# \qquad (\uparrow P)^{-} = P^{+} \supset \#$$

The classical connection

Define "polarity-collapsing" translation:

$$|\otimes| = |\otimes| = \wedge \quad |\oplus| = |\otimes| = \vee \quad |\rightarrow| = \supset \quad |-^{\perp}| = \neg \quad |\downarrow| = |\uparrow| = \cdot$$

Proposition

$$\vdash^{c} |N| \text{ iff } \vdash^{i} N^{*} \quad \vdash^{c} \neg |P| \text{ iff } \vdash^{i} (\bullet P)^{*}$$

Punchline: different polarizations yield different ¬¬-translations

Definition by canonical forms

Contexts
$$\Delta$$
, $\Gamma ::= \cdot | \Delta_1, \Delta_2 | N | \bullet P$

$$\frac{\Delta \Vdash [P] \quad \Gamma \vdash \Delta}{\Gamma \vdash [P]} \qquad \frac{\Delta \Vdash [P] \quad \longrightarrow \quad \Gamma, \Delta \vdash \#}{\Gamma \vdash \bullet P}$$

$$\frac{\Delta \Vdash [\bullet N] \quad \longrightarrow \quad \Gamma, \Delta \vdash \#}{\Gamma \vdash N} \qquad \frac{\Delta \Vdash [\bullet N] \quad \Gamma \vdash \Delta}{\Gamma \vdash [\bullet N]}$$

$$\frac{N \in \Gamma \quad \Gamma \vdash [\bullet N]}{\Gamma \vdash \#} \qquad \frac{\bullet P \in \Gamma \quad \Gamma \vdash [P]}{\Gamma \vdash \#} \qquad \frac{\Gamma \vdash \Delta_1 \quad \Gamma \vdash \Delta_2}{\Gamma \vdash \Delta_1, \Delta_2}$$

$$\Gamma$$
 \vdash $\#$ Γ \vdash $\#$ Γ \vdash Δ_1, Δ_2

Definition by canonical forms

Part III

Towards Generalized Polarity

Symmetry

Elegant symmetry or silly redundancy?

Symmetry

Elegant symmetry or silly redundancy?

$$\begin{array}{c|c}
 & \bullet P \\
\hline
 & N & [\bullet N]
\end{array}$$

$$\downarrow \\
[P] & \bullet P & \frac{[P]}{N} & \frac{\bullet P}{[\bullet N]} & N & [\bullet N]$$

Symmetry

Elegant symmetry or silly redundancy?

$$\begin{array}{c|c}
 & \bullet P \\
\hline
 & N & [\bullet N]
\end{array}$$

$$\downarrow \\
[P] & \bullet P & \frac{[P]}{N} & \frac{\bullet P}{[\bullet N]} & N & [\bullet N]$$

Before giving up on our intuitions, let's think about "contradiction" $\#\dots$

Credit: Randall Munroe

From Symmetry to Asymmetry

Key (simple) idea:

 $|\# \rightsquigarrow P|$ $| \bullet A \rightsquigarrow A \triangleright P |$

Perfect symmetry between positive and negative broken!

The basic judgments

	Interpretation		
	Logical	Operational	
[<i>P</i>]	"P obvious"	value of type P	
• <i>P</i>	"P false"	continuation accepting P	
N	"N true"	value of type N	
[● <i>N</i>]	"N absurd"	continuation accepting N	
#	"contradiction"	well-typed expression	

The basic judgments++

	Interpretation		
	Logical	Operational	
[<i>P</i>]	"P obvious"	value of type P	
• <i>P</i>	"P false"	continuation accepting P	
N	"N true"	value of type N	
[•N]	"N absurd"	continuation accepting N	
Р	"P true"	expression of type P	

The basic judgments++

	Interpretation		
	Logical	Operational	
[<i>P</i>]	"P obvious"	value of type P	
<i>P</i> ₁ ⊳ <i>P</i> ₂	" P_1 entails P_2 "	continuation from P_1 to P_2	
N	"N true"	value of type N	
[• <i>N</i>]	"N absurd"	continuation accepting N	
Р	"P true"	expression of type P	

The basic judgments++

	Interpretation		
	Logical	Operational	
[<i>P</i>]	"P obvious"	value of type P	
$P_1 \triangleright P_2$	" P_1 entails P_2 "	continuation from P_1 to P_2	
N	"N true"	value of type N	
[N ▶ P]	"N manifests P"	continuation from N to P	
P	"P true"	expression of type P	

Intuition

$$\frac{\text{"direct proof of P"}}{[P]} \qquad \frac{\text{"direct proof of P"}}{\bullet P}$$

$$\frac{\text{"direct refutation of N"}}{N} \qquad \frac{\text{"direct refutation of N"}}{[\bullet N]}$$

$$\frac{[P] \quad \bullet P}{\#} \qquad \frac{N \quad [\bullet N]}{\#}$$

$$\frac{\text{"direct proof of P"}}{[P]} \qquad \frac{\text{"direct proof of P_1"}}{P_1 \triangleright P_2}$$

$$\frac{\text{"direct refutation of N"}}{N} \qquad \frac{\#}{[N \triangleright P]}$$

$$\frac{[P] \quad \bullet P}{\#} \qquad \frac{N \quad [\bullet N]}{\#}$$

$$\frac{\text{"direct proof of P"}}{[P]} \qquad \frac{\text{"direct proof of P_1"} \longrightarrow P_2}{P_1 \triangleright P_2}$$

$$\frac{\text{"direct argument from N to α"}}{N} \qquad \frac{\alpha}{[N \triangleright P]}$$

$$\frac{[P] \quad \bullet P}{\#} \qquad \frac{N \quad [\bullet N]}{\#}$$

$$\frac{\text{"direct proof of P"}}{[P]} \qquad \frac{\text{"direct proof of P_1"} \longrightarrow P_2}{P_1 \triangleright P_2}$$

$$\frac{\text{"direct argument from N to α"}}{N} \qquad \frac{\text{"direct argument from N to P"}}{[N \triangleright P]}$$

$$\frac{[P] \quad P \triangleright P'}{P'} \qquad \frac{N \quad [N \triangleright P]}{P}$$

$$\frac{\text{"direct proof of P"}}{[P]} \qquad \frac{\text{"direct proof of P_1"} \longrightarrow P_2}{P_1 \triangleright P_2}$$

$$\frac{\text{"direct argument from N to α"} \longrightarrow \alpha}{N} \qquad \frac{\text{"direct argument from N to P"}}{[N \triangleright P]}$$

$$\frac{[P] \quad P \triangleright P'}{P'} \qquad \frac{N \quad [N \triangleright P]}{P}$$

$$\frac{[P]}{P} \qquad \frac{P \quad P \triangleright P'}{P'}$$

Definition by translation

Target: fragment of intuitionistic logic (or intuitionistic linear logic)

Given type translations P^+ and N^- , translate judgments by:

$$[P]^* = P^+$$
 $\bullet P^* = P^+ \supset \#$
 $N^* = N^- \supset \#$ $[\bullet N]^* = N^-$
 $\#^* = \#$

(where # a distinguished logical atom)

Definition by translation++

Target: fragment of 2nd-order intuitionistic logic

Given type translations P^+ and $N^{-\alpha}$, translate judgments by:

$$[P]^* = P^+ \qquad (P_1 \triangleright P_2)^* = P_1^+ \supset P_2^+$$

$$N^* = \forall \alpha. N^{-\alpha} \supset \alpha \qquad [N \triangleright P]^* = N^{-\alpha}[P^+/\alpha]$$

$$P^* = P^+$$

Definition by translation++

Target: fragment of 2nd-order intuitionistic logic + "monad T"

Given type translations P^+ and $N^{-\alpha}$, translate judgments by:

$$[P]^* = P^+ \qquad (P_1 \triangleright P_2)^* = P_1^+ \supset TP_2^+$$

$$N^* = \forall \alpha. N^{-\alpha} \supset T\alpha \qquad [N \triangleright P]^* = N^{-\alpha}[P^+/\alpha]$$

$$P^* = TP^+$$

(where "monad T" = $[\forall \alpha.\alpha \supset T\alpha] \land [\forall \alpha\beta.(\alpha \supset T\beta) \supset (T\alpha \supset T\beta)]$)

Definition by translation++

Type translation:

$$1^{+} = T = \bot^{-\alpha} \qquad 0^{+} = F = \top^{-\alpha}$$

$$(P_{1} \otimes P_{2})^{+} = P_{1}^{+} \wedge P_{2}^{+} \qquad (N_{1} \otimes N_{2})^{-\alpha} = N_{1}^{-\alpha} \wedge N_{2}^{-\alpha}$$

$$(P_{1} \oplus P_{2})^{+} = P_{1}^{+} \vee P_{2}^{+} \qquad (N_{1} \otimes N_{2})^{-\alpha} = N_{1}^{-\alpha} \vee N_{2}^{-\alpha}$$

$$(N \rightarrow P)^{+} = N^{-\alpha}[P^{+}/\alpha] \qquad (P \rightarrow N)^{-\alpha} = P^{+} \wedge N^{-\alpha}$$

$$(\downarrow N)^{+} = \forall \alpha. N^{-\alpha} \supset T\alpha \qquad (\uparrow P)^{-\alpha} = P^{+} \supset T\alpha$$

The intuitionistic connection

Define "polarity-collapsing" translation:

$$|\otimes| = |\otimes| = \wedge$$
 $|\oplus| = |\otimes| = \vee$ $|\rightarrow| = |\bullet| = \supset$ $|\downarrow| = |\uparrow| = \cdot$

Proposition

$$\vdash^{i} |A| \text{ iff } Mon_{T} \vdash^{2i} A^{*} \text{ for } \otimes, -\bullet \text{-free } A$$

Punchline: different "¬¬"-interpretations of intuitionistic logic

"Polarized IL is a restriction of a generalization of polarized CL"

Definition by canonical forms++

Contexts
$$\Delta$$
, $\Gamma ::= \cdot | \Delta_1, \Delta_2 | N | P \triangleright P'$

$$\frac{\Delta \Vdash [P] \quad \Gamma \vdash \Delta}{\Gamma \vdash [P]} \qquad \frac{\Delta \Vdash [P] \quad \longrightarrow \quad \Gamma, \Delta \vdash P'}{\Gamma \vdash P \triangleright P'}$$

$$\frac{\alpha.\Delta \Vdash [N] \triangleright - \quad \longrightarrow \quad \Gamma, \alpha.\Delta \vdash \alpha}{\Gamma \vdash N} \qquad \frac{\alpha.\Delta \Vdash [N] \triangleright - \quad \Gamma \vdash \Delta[P/\alpha]}{\Gamma \vdash [N] \triangleright P}$$

$$\frac{N \in \Gamma \quad \Gamma \vdash [N] \triangleright P}{\Gamma \vdash P} \qquad \frac{P \triangleright P' \in \Gamma \quad \Gamma \vdash [P]}{\Gamma \vdash P'} \qquad \frac{\Gamma \vdash \Delta_1 \quad \Gamma \vdash \Delta_2}{\Gamma \vdash \Delta_1, \Delta_2}$$

$$\frac{\Gamma \vdash [P]}{\Gamma \vdash P} \qquad \frac{\Gamma \vdash P \triangleright P'}{\Gamma \vdash P'}$$

Definition by canonical forms++

$$\frac{p \quad \sigma}{V^{+}} \quad p[\sigma] \qquad \frac{p \quad \mapsto \quad E_{p}}{K^{+}} \quad p \mapsto E_{p}$$

$$\frac{d \quad \mapsto \quad E_{d}}{V^{-}} \quad d \mapsto E_{d} \qquad \frac{d \quad \sigma}{K^{-}} \quad d[\sigma]$$

$$\frac{v \quad K^{-}}{E} \quad v \quad K^{-} \quad \frac{k \quad V^{+}}{.E} \quad k \quad V^{+} \qquad \overline{\sigma} \quad \cdot \quad \frac{\sigma_{1} \quad \sigma_{2}}{\sigma} \quad (\sigma_{1}, \sigma_{2})$$

$$\frac{V^{+}}{E} \quad ! V^{+} \qquad \frac{.E \quad K^{+}}{E} \quad K^{+} \$.E$$

The delimited connection

Delimited control operators are already here, really!

- Danvy & Filinski's original type-and-effect system as derived rules
- Connections to Asai & Kameyama '07 and Kiselyov & Shan '07
- See paper (and Twelf code!) for a more concrete connection

Important caveat: only the first-level of the CPS hierarchy

Inconclusions

Asymmetry in constructive logic is still not very well-understood

Continuation semantics (≠ semantics of callcc) deserves to be revisited

Filinski's monadic reflection [POPL94/10] is an underappreciated idea

The CPS hierarchy (= "substructural hierarchy"?) is ripe for exploration