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Introduction: context-free languages of arrows
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CFG over a category

In “Parsing as a lifting problem and the Chomsky-Schützenberger
representation theorem” (MFPS 2022), we proposed a definition of
context-free grammar over a category.

▶ A category C
▶ A finite species S
▶ A functor p : F S → W C
▶ A distinguished color S ∈ S

where F S is the free operad generated by S, and where W C is the
operad of spliced arrows in C.
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The spliced arrow operad W C

Colors are pairs (A, B) of objects of C.
Operations w0−w1− . . . −wn : (A1, B1), . . . , (An, Bn) → (A, B)
consist of sequences of n + 1 arrows in C, where wi : Bi → Ai+1 for
0 ≤ i ≤ n under the convention that B0 = A and An+1 = B.
The identity operation on (A, B) is given by idA−idB.
Composition performed by “splicing into the gaps” (see next slide).
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The spliced arrow operad W C

A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃
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The spliced arrow operad W C

The spliced arrow operad construction has a left adjoint, which we
called the “contour category” of an operad.

Cat OperadW

C

⊥

This adjunction is fundamental to our analysis of the C-S theorem,
but I won’t use it in the talk. (See the MFPS paper for details.)
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The language of arrows generated by a grammar

Let G = (C, S, p, S). The language of arrows of G is the subset

LG = { p(α) | α : S } ⊆ C(A, B)

where p(S) = (A, B).2

For example, any CFL in the classical sense is the language of
arrows of a CFG over a one-object category BΣ freely generated by
an arrow a : ∗ → ∗ for every letter a ∈ Σ of the alphabet.

2Which we often write as S < (A, B), saying that S refines the type (A, B).
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Example

𝓢

1 : S → AaCc
2 : A → aB
3 : B → aBb
4 : B → b
5 : C → c

S

CA

A B B

1 2 3 4

ε-a-c a-ε a-b b

↦ ↦ ↦ ↦

W𝓒

↦

F𝓢

B B

C

5

c

↦

∗
a

b

c

𝓒

S

CA

B

1

5

4

2

ε-a-c ∘ (a-ε∘b,c)
= abacc
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Motivations

Some motivations for modelling CFGs as functors p : F S → W C
▶ Builds on our work modelling type systems as functors
▶ Can reformulate many standard properties more simply
▶ Parsing becomes a lifting problem along the functor p

Some motivations for CFGs over proper categories (> 1 object)
▶ Typed words w : A → B yield a more elegant implementation

of common parsing hacks, such as an end-of-input symbol $.
▶ Can take the pullback of a CFG along an NDFA over the same

category, to define a CFG over the automaton! The usual
intersection construction is thereby decomposed in two steps.
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This talk3

Further generalize and abstract the notions of CFG and CFL:
1. Define generalized CFGs replacing W C by arbitrary operad O.
2. Redefine CFLs as initial models of CFGs, for an appropriate

notion of model.

Why (1)? It’s mathematically natural, and allows us to cover
interesting examples from the literature.
Why (2)? It formalizes the old idea that CFLs may be viewed as
minimal solutions to systems of polynomial equations, while also
allowing us to incorporate “proof-relevant” languages.

3Based on work-in-progress, not in the MFPS version of the paper.
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Generalized context-free grammars
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CFG over an operad

A generalized CFG G = (O, S, p, S) is given by
▶ An operad O
▶ A finite species S
▶ A functor p : F S → O
▶ A distinguished color S ∈ S

The language of constants generated by G is the subset

LG = { p(α) | α : S } ⊆ O(A)

where S < A.
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Example: multiple & parallel CFGs (Seki et al., 1991)

For any operad P, one can build operads Lsym P / Laff P / Lcart P:
▶ colors are lists [A1, . . . , Ak ] of colors of P
▶ operations

([f1, . . . , fk ], σ) : [Γ1], . . . , [Γn] → [A1, . . . , Ak ]

are given by a pair of a list of operations

f1 : Ω1 → A1, . . . , fk : Ωk → Ak

of P together with a bijection / injection / function
σ : Ω1, . . . , Ωk → Γ1, . . . , Γn.

These are, respectively, the free symmetric / semi-cartesian (or
“affine”) / cartesian monoidal operads over P.
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Example: multiple & parallel CFGs (Seki et al., 1991)

Observe that if P is an un(i)colored operad, then the colors of
Lsym P/Laff P/Lcart P are simply (isomorphic to) natural numbers.

A gCFG over Laff W BΣ with start symbol S < 1 is precisely a
multiple context-free grammar à la Seki et al. More generally, a
gCFG over Laff W C could be called a “multiple CFG of arrows”.
Such a grammar is a k-multiple CFG just in case every
non-terminal refines a list of length ≤ k.

For parallel multiple CFGs, just replace Laff P by Lcart P.
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Example: multiple & parallel CFGs (Seki et al., 1991)

We can define a 3-mCFG over the category A B C

a

#

b

#′

c

generating the language an#bn#′cn, with two colors

S < [(A, C)] R < [(A, A), (B, B), (C , C)]

and a triple of operations in S

x1 : R x2 : R → R x3 : R → S

mapped respectively to the following operations in Laff W C

([idA, idB, idC ], id) ([a−idA, b−idB, c−idC ], id) ([−#−#′−], id)

15 / 49



Example: series-parallel graphs (Courcelle & Engelfriet, 2012)

We can define a gCFG over the (large) operad Set, generating the
set of series-parallel graphs:
▶ S has one color S which is mapped to the set DiGr•,• of

finite directed graphs with two distinct marked vertices.
▶ S has a pair of binary operations

par , seq : S, S → S

mapped respectively to the operations

(∥), (;) : DiGr• × DiGr• → DiGr•

of parallel composition and series composition of marked
digraphs, as well as a constant e : S mapped to the digraph
• → • with one edge and two vertices.
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Closure properties of classical CFLs

Union: if L1, L2 ⊆ Σ∗ are CF, then so is L1 ∪ L2 ⊆ Σ∗

Concatenation: if L1, . . . , Ln ⊆ Σ∗ are CF, so is L1 · · · Ln ⊆ Σ∗

Homomorphic image: if L ⊆ Σ∗ is CF and ϕ : Σ∗ → Π∗ is a
monoid homomorphism, then ϕ(L) ⊆ Π∗ is CF

Intersection with regular languages: if L ⊆ Σ∗ is CF and
R ⊆ Σ∗ is regular, then L ∩ R ⊆ Σ∗ is CF
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Closure properties of generalized CFLs

Union: if L1, L2 ⊆ O(A) are CF, then so is L1 ∪ L2 ⊆ O(A)

Combination: if L1 ⊆ O(A1), . . . , Ln ⊆ O(An) are CF, and
f : A1, . . . , An → B an op of O, then f (L1, . . . , Ln) ⊆ O(B) is CF

Functorial image: if L ⊆ O(A) is CF and F : O → P is a functor
of operads, then F (L) ⊆ P(F A) is CF

Intersection with regular languages: if L ⊆ O(A) is CF and
R ⊆ O(A) is regular4, then L ∩ R ⊆ O(A) is regular.

4We say that a language of constants is regular if it is recognized by an
operadic NDFA = it is the image of some color q ∈ Q along a finitary ULF
functor of operads Q → O. Regular word languages and regular tree languages
are recovered as special cases. As previously alluded to, intersection closure
reduces to a more fundamental closure of gCFLs under pullback along NDFAs,
combined with functorial image.
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gCFLs as initial models of gCFGs
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CFLs as minimal solutions to polynomial equations

Consider two different grammars for well-bracketed words:

G1 =
S → ϵ
S → [S]
S → SS

G2 = S → ϵ
S → [S]S

Although the language WB = LG1 = LG2 generated by both
grammars is the same, G1 and G2 may be seen as implicitly stating
two different equations satisfied by this language:

L = ϵ + [L] + LL (1)
L = ϵ + [L]L (2)

WB is the minimal solution to (1) in the sense it is contained in
any language L such that L = ϵ + [L] + LL. It is also the minimal
solution5 to (2).

5In fact L = ϵ + [L]L has a unique solution, for somewhat special reasons...
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CFLs as minimal solutions to polynomial equations

An idea first formalized by Ginsburg & Rice (1962), further
developed by Mezei & Wright (1967).

Also advocated by John Conway in his textbook (1971):
In the standard treatment [of context-free languages]
the transient letters are construction letters used as scaf-
folding in forming the language, but then discarded. We
propose to develop the theory in a less orthodox way, in
which this scaffolding never appears. We directly char-
acterize the terminal images of the transient letters in
terms of certain equations they satisfy.

Regular Algebra and Finite Machines, Ch. 10, p. 80
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gCFGs as sketches, gCFLs as initial models

Rather than do away with the scaffolding (as per Conway), we will
treat a gCFG as defining a certain kind of “sketch”6, which induces
a category of models in some target space. gCFLs are then defined
as initial models of gCFGs.

To make this precise, we first need to introduce some fibrational
concepts for functors of operads, which will categorify systems of
polynomial equations.

6In the spirit of Ehresmann, and formally very similar to the sketches used
by Shulman in “LNL polycategories and doctrines of linear logic” (LMCS 19:2).
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Notation

Given a functor of operads q : E → B, we write

Ω
q
< ∆

to indicate Ω is a list of colors in E with image ∆ in B, and

α : R1, . . . , Rn
q=⇒
f

R

to indicate that α : R1, . . . , Rn → R is an operation in E with
image f in B. We sometimes omit q when clear from context.

We also write Ef (R1, . . . , Rn; R) for the set of operations

Ef (R1, . . . , Rn; R) = { α | α : R1, . . . , Rn
q=⇒
f

R }.
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Minimal cones

A cone in an operad O is a family of operations (gi : ∆i → A)i∈I
in O with the same output color A.

Let q : E → B be a functor of operads. A cone (αi : Ωi ⇒q
gi R)i∈I

in E is said to be minimal over a cone (gi : ∆i → A)i∈I in B
(relative to q) if for every operation f : Γ, A, Γ′ → B in B with
|Γ| = k, the function

(− ◦k αi)i∈I : Ef (Θ, R, Θ′; S) −→
∏
i∈I

Ef ◦kgi (Θ, Ωi , Θ′; S)

induced by precomposition with the αi is invertible.

Given (gi : Γi → A)i∈I and (Ωi <q Γi)i∈I , there exists at most one
q-minimal lift of (gi)i to (Ωi)i , up to canonical isomorphism.
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Special case: pushforward

A single operation α : Ω ⇒q
g R of E is a minimal cone just in case

it is (strongly) opcartesian relative to the functor of operads q.7 In
this case, we say R is the pushforward of Ω along g , generalizing
the act of taking the image of a subset along a function.

7See Hermida (2000, 2004) for this notion, which extends the classical
notion of opcartesian arrow relative to a functor of categories.
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Special case: fiberwise coproduct

A cone (αi : Ri ⇒idB
R)i∈I of operations in E all lying over the

same identity operation in B is minimal just in case R is the
fiberwise coproduct of the Ri , generalizing the act of taking the
union of subsets of a set. This means in particular that we have

Ef (Θ, R, Θ′; S) ∼=
∏
i∈I

Ef (Θ, Ri , Θ′; S)

for every compatible operation f .
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General case

We write ∑
i∈I gi Ωi for some choice of object R coming together

with a minimal cone
(
inj : Ωj ⇒gj

∑
i∈I gi Ωi

)
j∈I .

Proposition
Let q : E → B be a functor of operads. TFAE:8

1. There is a minimal lift
∑

i∈I gi Ωi < A of every cone
(gi : Γi → A)i∈I in B to any family Ωi < Γi in E .

2. q has all pushforwards and fiberwise coproducts, i.e., for any
operation g : Γ → A and list of colors Ω < Γ there is a
pushforward g Ω < A, and for any family of colors
(Ri < A)i∈I , there is a fiberwise coproduct

∑
i∈I Ri < A.

Moreover, the equivalence holds while maintaining any bound
|I| < κ on the cardinalities of the indexing sets.

8Cf. [MZ 2013, p. 13], [Shulman 2023, Thm. 4.28]
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Polynomial closure

We say q is polynomially closed when either of the equivalent
conditions holds with κ = ω, meaning colors of E are closed under
taking finite sums of monomials “weighted” by operations of B.

Proposition
The following identities hold∑

i∈I

∑
j∈J

Rij ≡
∑

(i ,j)∈I×J
Rij

f (Θ,
∑
i∈I

Ri , Θ′) ≡
∑
i∈I

f (Θ, Ri , Θ′)

f (g1 Ω1, . . . , gn Ωn) ≡ (f ◦ (g1, . . . , gn))(Ω1, . . . , Ωn)

in the sense that whenever the minimal lift on one side exists then
so does the other, with a canonical isomorphism between them.

28 / 49



Polynomial closure

Let Set be the operad of sets and n-ary functions.
Let Subset be the operad whose colors are pairs (X , U ⊂ X ), and
whose operations (X1, U1), . . . , (Xn, Un) → (Y , V ) are functions
f : X1, . . . , Xn → Y st x1 ∈ U1, . . . , xn ∈ Un ⇒ f (x1, . . . , xn) ∈ V .
Let sub : Subset → Set be the evident projection.

Proposition
sub is polynomially closed, where pushforward and fiberwise
coproducts are given by image and union respectively:

f ((X1, U1), . . . , (Xn, Un)) = (Y , f (U1, . . . , Un))∑
i∈I

(X , Vi) = (X , ∪i∈IVi)
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Model of a gCFG
Let p : F S → O be a functor of operads, w/associated map of
species ϕ : S → O. Let q : E → B be any functor of operads. A
model of p in q is a commuting square

F S E

O B

p

M̃

q

M

such that for every color R of F S, the cone of nodes in S

(x : R1, . . . , Rk
ϕ=⇒
g

R)x∈S

is mapped to a q-minimal cone in E

(M̃x : M̃R1 , . . . , M̃Rk
q=⇒

Mg
M̃R)x∈S
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Model of a gCFG

A model of a gCFG G is a model of its underlying functor p.

Thus, in our sum-of-pushforward notation, a model (M, M̃) of a
gCFG corresponds to a solution for the system of equations

M̃R ≡
∑

R1,...,Rk⇒ϕ
g R

Mg(M̃R1 , . . . , M̃Rk ) (3)

with one such equation for every non-terminal.
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The category of models

Let (L, L̃) and (M, M̃) be models of p in q. A morphism
(L, L̃) ⇒ (M, M̃) is given by a pair of natural transformations
θ : L ⇒ M and θ̃ : L̃ ⇒ M̃ such that the diagram commutes

F S E

O B

p

L̃

M̃

q
L

M

θ̃

θ

in the sense that the natural transformations obtained by
whiskering are equal q ◦ θ̃ = θ ◦ p.
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The category of models

Note the definition does not impose any compatibility conditions
between the natural transformations (θ, θ̃) and the minimal cones
in q, in other words it is just a 2-morphism

(θ, θ̃) : (L, L̃) =⇒ (M, M̃) : p → q

between the underlying morphisms of functors.
Given arbitrary functors p and q, we write [p, q] for the category of
morphisms of functors p → q and 2-morphisms between them.
When p : F S → O is a functor from a free operad, we write
Mod(p, q) for the full subcategory of [p, q] spanned by the models.

33 / 49



The language generated by a gCFG as an initial model

We aim to show that the language of constants generated by a
gCFG G defines an initial model of G in sub : Subset → Set.

We will obtain this as a corollary of several more basic facts, and in
particular via a more fundamental (“proof-relevant”) model of G in
the polynomially closed functor tgt : Set→ → Set.
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The constants algebra

Every operad O comes equipped with a canonical functor

el[O] : O → Set

(abbreviated “el” when O is clear from context), defined by

elA = { c | c : A }
elf = (c1, . . . , cn) 7→ f ◦ (c1, . . . , cn)

For example when O = W C:

el(A,B) = C(A, B)
elw0−...−wn : C(A1, B1) × · · · × C(An, Bn) → C(A, B)
elw0−...−wn = (u1, . . . , un) 7→ w0u1w1 . . . unwn
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The constants algebra

A functor O → Set is also called a O-algebra.
Important fact: el is the initial O-algebra, in the sense that it has
a unique natural transformation to any other algebra M : O → Set,
defined by the family of fns elA → MA sending a constant c : A of
O to the element Mc of MA determined by the algebra structure.
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The constants algebra

For any functor p : D → O, we can therefore build a triangle

D Set

O

p

el[D]

el[O]

el[p]

where el[p] is uniquely determined by initiality of el[D].
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Arrow operads

In general, natural transformations θ : L ⇒ M : O → P between
functors of operads have the following equivalent description.
Let P→ be the operad whose colors are unary operations u of P,
and whose n-ary operations u1, . . . , un → u are pairs (fs , ft) of
n-ary operations of P such that ft ◦ (u1, . . . , un) = u ◦ fs .
There are two evident functors src, tgt : P→ → P.
Then giving a natural transformation θ : L ⇒ M : O → P is
equivalent to giving a functor of operads θ̃ : O → P→ such that
src ◦ θ̃ = L and tgt ◦ θ̃ = M.
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An initial model in tgt : Set→ → Set

The canonical natural transformation el[p] : el[D] ⇒ el[O] ◦ p
therefore induces a commutative square:

D Set→

O Set

p

ẽl[p]

tgt
el[O]

Theorem: this defines an initial model of p in tgt!
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Polynomial closure of tgt

Proposition
tgt is polynomially closed, where:

f (u1 : Y1 → X1, . . . , un : Yn → Xn) = f ◦ (u1, . . . , un)
: Y1 × · · · × Yn → X∑

i∈I
(vi : Yi → X ) = [vi ]i∈I :

∐
i∈I

Yi → X

40 / 49



Initiality of the constants model

Two key facts:
1. For any p : D → O, the morphism (el[O], ẽl[p]) : p → tgt is

an initial object in [p, tgt].
2. (el[O], ẽl[p]) is a model of p in tgt when D = F S.

(1) is immediate. (2) relies on inductive definition of F S.
Since Mod(p, tgt) is a full subcategory of [p, tgt], we conclude that
(el[O], ẽl[p]) is an initial object in Mod(p, tgt)!
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An initial model in sub : Subset → Set

Consider the composite morphism:

F S Set→ Subset

O Set Set

p

ẽl[p]

tgt

im

sub
el[O]

This defines an initial model of p in sub, essentially because the
image functor is a left adjoint.9

We recover the “language of constants” as LG = im(ẽlp(S))!

9Postcomposition with the left adjoint morphism im : tgt → sub induces a
functor [p, im] : [p, tgt] → [p, sub] which is itself a left adjoint, and therefore
sends the initial object (elO, ẽlp) to an initial object (elO, ẽlp im) in [p, sub].
Moreover, it may be readily verified that im preserves pushforwards and
fiberwise coproducts, and hence preserves models. (More generally, a left
adjoint morphism into a functor of operads with all minimal lifts preserves
minimal cones.) We conclude that (elO, ẽlp im) is an initial model of p in sub.
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A more abstract view of gCFLs

The initial model of a grammar G in tgt : Set→ → Set may be
seen as a “proof-relevant language”, in the sense that it encodes
not just a subset of constants generated by G but also the set of
parse trees of every constant in the language.
But why stop there? Given any functor of operads q : E → B we
can define the language generated by G in q, notated L̃q

G , as the
interpretation L̃S <q LA of its start symbol S <p A for some initial
model (L, L̃) : p → q.
We refer to the languages generated by gCFGs in q as q-gCFLs.

43 / 49



Some closure properties of q-gCFLs

If q : E → B is polynomially closed, then q-gCFLs are closed under
(the appropriate analogue of) “union” and “combination”, defined
using fiberwise coproduct and pushforward respectively.10

If B is moreover cocomplete, then q-gCFLs are closed under
“functorial image”, defined using pushforward along a natural
transformation obtained via left Kan extension.

O B

P

L

F L′=LanF L
θ

10To make these statements precise, we need to be able to refer to the base
interpretation L : O → B of a q-gCFL (L, L̃) : p → q. For example, “union” is
stated as follows: if L̃1, . . . , L̃k <q LA are q-gCFLs with the same base
interpretation L, then

∑k
i=1 L̃i <

q LA is a q-gCFL with base interpretation L.
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Conclusion
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Summary

Several steps of generalization and abstraction:

CFGs ; CFGs of arrows
F S

W C

; gCFGs
F S

O

CFLs ; initial models of CFGs ; q-gCFLs
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Some open questions and directions

1. Other interesting examples of gCFGs?
2. Interesting examples of q-gCFLs for q other than tgt or sub?
3. Are q-gCFLs closed under intersection with q-regular

languages? (Surely yes, but we need the right definitions!)
4. What are pushdown automata in this setting?11

5. When does a gCFG have a unique model?12

6. Is there a nice story to tell about SOL definability?

11Ongoing work with PAM, which we need to resume!
12Some results with F. Jafarrahmani, which we need to write up!
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Extra slides
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Decomposing the intersection of a gCFL with a regular language

Given a gCFG and a NDFA over the same operad, we obtain a
pullback in Operad from a corresponding pullback in Species:

F S ′ F S

Q O

F ψ

p′
⌟

p

pQ

S ′ S

Q O

ψ

ϕ′
⌟

ϕ

pQ

This relies crucially on the fact that pQ is finitary and ULF!

Taking image of gCFL generated by p′ along pQ yields intersection.
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