Parsing as a lifting problem and the **Chomsky-Schützenberger Representation Theorem**

Paul-André Melliès

CMU Pittsburgh, PA 21 July 2022

based on a paper presented at MFPS 2022

preliminary version: https://hal.archives-ouvertes.fr/hal-03702762 (comments welcome!)

Noam Zeilberger

1. Introduction

A functorial view of type systems (cf. M&Z, "Functors are Type Refinement Systems", POPL 2015)

Manifesto.

The standard interpretation of type systems as categories collapses the distinction between terms, typing judgments, and typing derivations, and is *therefore inadequate* for understanding what type systems do mathematically. Instead, type systems are better modelled as **functors** $p: \mathbb{D} \to \mathbb{T}$ from a category \mathbb{D} whose morphisms are typing derivations to a category \mathbb{T} whose morphisms are the terms corresponding to the underlying subjects of those derivations.

Typing as a lifting problem

f is a term with "intrinsic" type $A \rightarrow B$

Typing as a lifting problem

The triple (R,f,S) form a **typing judgment**, asserting that f may be assigned an "extrinsic" type R → S

Typing as a lifting problem

α is a typing derivation providing evidence for the judgment

A functorial view of context-free grammars

We developed this perspective in a series of papers, and believe it may be usefully applied to a large variety of deductive systems, beyond type systems in the traditional sense. In this work, we focus on derivability in context-free grammars, a classic topic in formal language theory with wide applications in CS.

Our starting point will be to *represent CFGs as functors of operads* $p: \mathbb{D} \to \mathbb{T}$, where \mathbb{D} is a freely generated (colored) operad and $\mathbb{T} = W[\Sigma]$ is something we call the "operad of spliced words".

(Usage note: "operad" = colored operad = multicategory.)

+ associativity & Unitality axioms

 $f \circ (c,g,id_G) : Y,P,G \rightarrow Y$

Reminder on CFGs

A context-free grammar is a tuple G = (Σ , N, S, P) consisting of:

• a finite set Σ of *terminal symbols*

- a finite set N of *non-terminal symbols*
- a distinguished element $S \in N$ called the *start symbol*
- a finite set P of *production rules* $R \rightarrow \sigma$ where $R \in N$ and $\sigma \in (N \cup \Sigma)^*$

We write $\sigma_1 \Rightarrow \sigma_2$ if there exist $\rho, \tau \in (N \cup \Sigma)^*$ and a production rule $R \rightarrow \sigma$ such that $\sigma_1 = \rho R \tau, \sigma_2 = \rho \sigma \tau$. The *language* of G is the set of strings { w $\in \Sigma^* | S \Rightarrow^+ w$ }.

The operad of spliced words

Observation: any production rule can be factored as $R \rightarrow w_0 R_1 w_1 \dots R_n w_n$, where $w_0, w_1, \dots, w_n \in \Sigma^*$ and $R_1, \dots, R_n \in N$.

If we forget the non-terminals, the remaining sequence wo-w1-...-wn can be seen as an n-ary operation of the operad of spliced words $W[\Sigma]$. Composition in this (uncolored) operad is performed by "splicing into the gaps", for example:

Representing CFGs as functors of operads: example

(derivations)

(spliced words)

Plan for the talk

It turns out that taking "spliced words" extends to a functor W[-] : Cat \rightarrow Operad, allowing us to define CFGs of arrows over any category. We'll see that representing CFGs as functors leads to a simplification of many standard concepts, and that closure properties of CF languages generalize to CF languages of arrows.

Later, we will see that W[-] has a left adjoint C[-] : Operad \rightarrow Cat. This construction, called the "contour category" of an operad, has a nice geometric interpretation, and we will use it to prove (a refinement and generalization of) the Chomsky-Schützenberger Representation Theorem*.

In between, we will also talk about automata over categories and operads.

*original version: « any CF language is the homomorphic image of the intersection of a Dyck language with a regular language »

Related work

The idea of defining CFGs as functors from free multicategories was discussed briefly by R.F.C. Walters in "A note on context-free languages", JPAA 62 (1989)

This idea is also closely related to Philippe de Groote's encoding of CFGs as *abstract categorial grammars,* although the ACG work is expressed within a λ -calculus framework rather than a categorical / operadic one.

See introduction to our paper for a bit more discussion of related work. Additional pointers to related work are of course welcome. (Has the contour / splicing adjunction not been noticed before??)

2. Context-free languages of arrows

The operad of spliced arrows

Let \mathbb{C} be a category. The operad $W[\mathbb{C}]$ is defined as follows:

- its colors are pairs (A,B) of objects of \mathbb{C} ;
- its n-ary operations $(A_1,B_1), \dots, (A_n,B_n) \rightarrow (A,B)$ consist of sequences wo-w1-···-wn of n+1 arrows in \mathbb{C} separated by n gaps notated -, where each arrow must have type wi : Bi \rightarrow Ai+1 for $0 \le i \le n$, under the convention that $B_0 = A$ and $A_{n+1} = B$;
- composition of spliced arrows is performed by "splicing into the gaps" (see next slide)
- the identity operation on (A,B) is given by id_A -id_B.

(W[\mathbb{C}] generalizes W[Σ], taking $\mathbb{C} = \mathbb{B}_{\Sigma}$ the free monoid seen as one-object category.)

The operad of spliced arrows

 $W_0-W_1-W_2-W_3$: (A₁,B₁),(A₂,B₂),(A₃,B₃) \rightarrow (A,B)

The operad of spliced arrows

The splicing functor

The operad of spliced arrows construction defines a functor

Cat
$$\longrightarrow$$
 Op

since any functor of categories $F : \mathbb{C} \rightarrow \mathbb{D}$ induces a functor of operads $W[F]: W[\mathbb{C}] \to W[\mathbb{D}].$

perad

Species (some terminology)

A (colored non-symmetric) **species** is a span of sets of the form

$$C^* \xleftarrow{i} V \xrightarrow{o} C$$

with the following interpretation: C is a set of "colors", V a set of "nodes", and i : V \rightarrow C^{*} and o : V \rightarrow C return respectively the list of input colors and the unique output color of each node. We say a species is **finite** (aka "polynomial") iff both C and V are finite. A map of species is a pair of functions (φ_{C}, φ_{V}) making the diagram commute:

$$C^{*} \xleftarrow{i} V \xrightarrow{o} C$$

$$\downarrow \phi_{c}^{*} \qquad \downarrow \phi_{v} \qquad \downarrow \phi_{c}$$

$$\downarrow \phi_{c}^{*} \qquad \downarrow \phi_{v} \qquad \downarrow \phi_{c}$$

$$D^{*} \xleftarrow{i} W \xrightarrow{o'} D$$

The free / forgetful adjunction

Any operad has an **underlying species**, where C is the set of colors and V the set of operations, just forgetting about composition and identity.

Conversely, to any species \mathbb{S} there is an associated **free operad** Free \mathbb{S} .

Species(Free S, \mathbb{O}) \cong Operad(S, Forget \mathbb{O})

Definition

A context-free grammar of arrows is a tuple $G = (\mathbb{C}, \mathbb{S}, S, \varphi)$ consisting of a category \mathbb{C} , a finite species \mathbb{S} equipped with a distinguished color $S \in \mathbb{S}$ and a functor of operads $p : Free \mathbb{S} \rightarrow W[\mathbb{C}]$.

The context-free language of arrows L_G generated by the grammar G is the subset of arrows in \mathbb{C} which, seen as constants of $W[\mathbb{C}]$, are in the image of constants of color S in Free S, that is, $L_G = \{ p(\alpha) \mid \alpha : S \}$.

Proposition: A language $L \subseteq \Sigma^*$ is context-free in the classical sense iff it is the language of arrows of a context-free grammar over \mathbb{B}_{Σ} .

(Another look at the example)

Refining classical CFGs with "gap types"

A feature of the general notion of CFG of arrows is that non-terminals are *sorted*. Adopting our conventions for type refinement, we sometimes write $R \sqsubset (A,B)$ to indicate p(R) = (A,B) and say that R refines the **gap type** (A,B). The language generated by a grammar with start symbol S \sqsubset (A,B) is a subset of $\mathbb{C}(A,B)$.

As a simple example, consider the category $\mathbb{B}_{\Sigma}^{+} = \mathbb{B}_{\Sigma} +_{\sigma} 1$ constructed from \mathbb{B}_{Σ}^{-} by freely adjoining an object T and an arrow $: * \rightarrow T$. A CFG over $\mathbb{B}_{\Sigma}^{\top}$ may include production rules that can only be applied upon reaching end of input, like Knuth's "0th production" rule S' \rightarrow S\$ from the original paper on LR parsing. (Here $S \sqsubset (*,*)$ is "classical" and $S' \sqsubset (*,T)$ is "end-of-input-aware".)

More significant examples coming up, including CFGs over runs of automata!

Reformulating standard properties of CFGs

Let $G = (\mathbb{C}, \mathbb{S}, S, p)$ be a CFG of arrows.

- G is **linear** iff S only has nodes of arity ≤ 1 . It is **left-linear** iff it is linear and every unary node x of S is mapped by p to an operation of the form id-w.
- G is **bilinear** (a generalization of Chomsky NF) iff S only has nodes of arity ≤ 2 .
- G is **unambiguous** iff for any constants α , β : S in Free S, if $p(\alpha) = p(\beta)$ then $\alpha = \beta$.
- A non-terminal R is **nullable** if there exists a constant α : R of Free S s.t. $p(\alpha) = id$.
- A non-terminal R is **useful** if there exists a constant α : R and a unary op β : R \rightarrow S. Note that if G has no useless non-terminals then G is unambiguous iff p is faithful.

Basic closure properties of CF languages

[Union] If L₁, L₂ \subseteq $\mathbb{C}(A,B)$ are CF, so is L₁ \cup L₂ \subseteq $\mathbb{C}(A,B)$.

[Spliced concatenation] If $L_1 \subseteq \mathbb{C}(A_1, B_1), \dots, L_n \subseteq \mathbb{C}(A_n, B_n)$ are CF, and wo-w1-···-wn : $(A_1,B_1),...,(A_n,B_n) \rightarrow (A,B)$ is an operation of W[C], then woL1w1···Lnwn $\subseteq \mathbb{C}(A, B)$ is also CF.

[Functorial image] If $L \subseteq \mathbb{C}(A, B)$ is CF, and $F : \mathbb{C} \to \mathbb{D}$ is a functor of categories, then $F(L) \subseteq \mathbb{D}(F(A), F(B))$ is also CF.

(Proofs left as an exercise!)

The translation principle

Let $G_1 = (\mathbb{C}, \mathbb{S}_1, \mathbb{S}_1, p_1)$ and $G_2 = (\mathbb{C}, \mathbb{S}_2, \mathbb{S}_2, p_2)$ be two CFGs over the same category \mathbb{C} .

If there is a fully faithful functor of operads T : Free $S_1 \rightarrow$ Free S_2 such that $p_1 = T p_2$ and $T(S_1) = S_2$, then $L_{G_1} = L_{G_2}$.

Example use of translation principle: for any CFG of arrows, there is a bilinear CFG of arrows generating the same language.

Parsing as a lifting problem

Besides characterizing the language generated by a grammar, we're often interested in the dual problem of parsing. In our functorial formulation of context-free grammars, parsing an arrow w may be considered as the problem of computing its inverse image along p : Free $S \rightarrow W[\mathbb{C}]$.

One high-level tool for analyzing this problem is the correspondence between functors of categories $p : \mathbb{D} \to \mathbb{T}$ and lax functors $F : \mathbb{T} \to \text{Span}(\text{Set})$ into the bicategory of spans of sets, which can be extended smoothly to functors of operads. Adapting terminology introduced by Ahrens and Lumsdaine, we refer to a lax functor of operads $F : \mathbb{T} \to \text{Span}(\text{Set})$ as a **displayed operad**.

Displayed free operads, and generalized CYK parsing

One can derive an inductive formula for displayed free operads, which refines the inductive formula for free operads Free $S \cong I + S \circ Free S$ that characterizes the free operad over S as a species of S-labelled trees.

Specializing the formula to the underlying functor of a CFG seen as a displayed operad F : W[\mathbb{C}] \rightarrow Span(Set), we obtain a formula for the fiber F_w of parse trees of any given arrow w. We can also derive an inductive rule for computing the set N_w of non-terminals deriving w, which is essentially the rule given by Leermakers (1989) in his generalization of CYK parsing to arbitrary CFGs. As he explained, the relation N_w can be solved in cubic time for bilinear grammars.

> $(x:R_1,\ldots,R_k\to K)$ $= w_0 u_1 w_1 \dots u_k w_k \qquad \phi(x) = w_0 - w_1 - \dots$ $R \in N_w$

$$R) \in S$$

.- $w_n \quad R_1 \in N_{u_1} \quad \dots \quad R_k \in N_{u_k}$

3. Finite-state automata over categories and operads

Reminder on finite state automata

An NDFA: [recognizing the language (a+b)*(abb+ba)]

alphabet $\Sigma = \{a,b\}$ *state set* $Q = \{0,1,2,3,4\}$

(no *E*-transitions)

Representing automata as functors

Two key properties of NDFAs

Let $p: \mathbb{D} \to \mathbb{T}$ be a functor of categories.

p is **finitary** if either of the following equivalent conditions hold:

- the fibers $p^{-1}(A)$ and $p^{-1}(w)$ are finite for every object A and arrow w in \mathbb{T} ;
- the associated lax functor $F : \mathbb{T} \rightarrow \text{Span}(\text{Set})$ factors via Span(FinSet).

p is **ULF** if either of the following equivalent conditions hold:

- for any arrow α of \mathbb{D} , if $p(\alpha) = uv$ for some pair of arrows u and v of \mathbb{T} , there
- exists a unique pair of arrows β and γ in \mathbb{D} such that $\alpha = \beta \gamma$, $p(\beta) = u$, $p(\gamma) = v$. • the associated lax functor $F : \mathbb{T} \rightarrow \text{Span}(\text{Set})$ is a pseudofunctor.

Proposition: a functor $p: \mathbb{Q} \rightarrow \mathbb{B}_{\Sigma}$ is the underlying bare automaton of a NDFA with alphabet Σ iff p is both finitary and ULF.

- ULF = "unique lifting of factorizations" (Lawvere & Meni)

Definition

A NDFA over a category is a tuple $M = (\mathbb{C}, \mathbb{Q}, p : \mathbb{Q} \to \mathbb{C}, q_0, q_f)$ consisting of two categories \mathbb{C} and \mathbb{Q} , a finitary ULF functor $p:\mathbb{Q} \to \mathbb{C}$, and a pair q_0 , q_f of objects of \mathbb{Q} .

The **regular language of arrows** L_M recognized by the automaton M is the subset of arrows in \mathbb{C} that can be lifted along p to an arrow $\alpha : q_0 \rightarrow q_f$ in \mathbb{Q}_f that is, $L_M = \{ p(\alpha) \mid \alpha : q_0 \rightarrow q_f \}$.

Proposition: A language $L \subseteq \Sigma^*$ is regular in the classical sense iff L\$ is the regular language of arrows of a NDFA over $\mathbb{B}_{\Sigma}^{\top}$.

Automata over operads

The notions of finitary and ULF extend smoothly to functors of operads.

By analogy, an NDFA over an operad is a tuple $M = (\mathbb{O}, \mathbb{Q}, p : \mathbb{Q} \to \mathbb{O}, q)$ where $p: \mathbb{Q} \to \mathbb{O}$ is a finitary ULF functor of operads, and q a color of \mathbb{Q} .

When \mathbb{O} is a free operad, this recovers the standard notion of ND finite state tree automaton. But the notion of NDFA over an operad is more general!

Proposition: if a functor of categories $p: \mathbb{Q} \to \mathbb{C}$ is finitary or ULF, so is the functor of operads $W[p] : W[\mathbb{Q}] \rightarrow W[\mathbb{C}]$.

: any NDFA over a category induces an NDFA over its spliced arrow operad, by the mapping $(p : \mathbb{Q} \to \mathbb{C}, q_0, q_f) \mapsto (W[p] : W[\mathbb{Q}] \to W[\mathbb{C}], (q_0, q_f))$

4. The Representation Theorem

Overview

Chomsky & Schützenberger (1963): Any CF language is the homomorphic image of the intersection of a Dyck language with a regular language.

Our version: Any CF language of arrows in $\mathbb C$ is the functorial image of the intersection of a \mathbb{C} -chromatic tree contour language and a regular language.

The proof relies on two constructions that are of more general interest:

- 1. The pullback of a CFG of arrows along an NDFA, which we use to show that CF languages are closed under intersection with regular languages.
- 2. The *contour category* of an operad, providing a left adjoint to the splicing functor, which we use to define a "universal CFG" for any pointed finite species.

An important property of ULF functors

Let $p_{\Omega}: \mathbb{Q} \to \mathbb{O}$ be a ULF functor of operads. Then the pullback of p : Free $\mathbb{S} \to \mathbb{O}$ along p_{Ω} in the category of operads is obtained from a corresponding pullback of $\varphi : \mathbb{S} \to \mathbb{O}$ along $p_{\Omega} : \mathbb{Q} \to \mathbb{O}$ in Species.

Pulling back a CFG along a NDFA

By the previous result, we can compute the pullback on the right:

The pullback of G along M is the grammar $G' = (\mathbb{Q}, S', (S,(q_0,q_f)), p')$. Note that G' generates a language of runs of M!

Taking the image of G' along p_M yields a grammar generating $L_G \cap L_M$.

The contour category of an operad

Let \mathbb{O} be an operad. The category C[\mathbb{O}] is a quotient of the free category with:

- objects given by *oriented colors* R^{ϵ} consisting of a color R of \mathbb{O} and an orientation $\varepsilon \in \{ u, d \}$ ("up" or "down");
- arrows generated by pairs (f,i) of an operation $f: R_1, \dots, R_n \rightarrow R$ of \mathbb{O} and an index $0 \le i \le n$, defining an arrow $R_i^d \rightarrow R_{i+1}^{\upsilon}$ where $R_0^d = R^{\upsilon}$ and $R_{n+1}^{\upsilon} = R^d$;

subject to the equations $id_{R^{u}} = (id_{R}, 0)$ and $id_{R^{d}} = (id_{R}, 1)$ plus the equations

$$(f \circ_i g, j) = \begin{cases} (f, j) & j < i \\ (f, i)(g, 0) & j = i \\ (g, j - i) & i < j < i + m \\ (g, m)(f, i + 1) & j = i + m \\ (f, j - m + 1) & j > i + m \end{cases} (f \circ_i c, j) = \begin{cases} (j, j) \\ (j, j) \\$$

for every operation f, operation g of positive arity m > 0, and constant c.

- (f, j) j < i(f, i)(c, 0)(f, i + 1) j = i $(f, j+1) \qquad \qquad j > i$

The contour category of an operad

(c,0)

The contour category of an operad

The contour / splicing adjunction

This construction provides a left adjoint to the splicing contruction:

 $\mathsf{Operad}(\mathbb{O}, \mathbb{W}[\mathbb{C}]) \cong \mathsf{Cat}(\mathbb{C}[\mathbb{O}], \mathbb{C})$

The unit and counit have nice descriptions:

$$\begin{split} \eta : \mathbb{O} &\to W[C[\mathbb{O}]] & \epsilon : C[W[0]] \\ R &\mapsto (R^u, R^d) & (A, B)^u &\mapsto \\ f &\mapsto (f, 0) - \cdots - (f, n) & (w_0 - \cdots - w_n) \\ \end{split}$$

 $\begin{array}{c} \mathbb{C} \\ \mathbb{A} & (A,B)^{d} \mapsto B \\ \mathbb{W}_{n,i} \end{pmatrix} \mapsto \mathbb{W}_{i} \end{array}$

Free contour categories

The contour category of a free operad is itself a free category, with C[Free S] generated by the **corners**^{*} (x,i) consisting of an n-ary node x and index $0 \le i \le n$.

We sometimes write C[S] as another name for this category.

Although C[-] does not preserve ULF in general, we have that for any species map $\Psi : \mathbb{S} \to \mathbb{R}$, the functor of categories $C[\Psi] : C[\mathbb{S}] \to C[\mathbb{R}]$ is ULF.

*Note that the word "corner" comes from the theory of planar maps, but in parsing theory, corners are called "dotted rules"!

The universal CFG of a pointed finite species

By the contour / splicing adjunction, any p : Free $\mathbb{S} \rightarrow \mathbb{W}[\mathbb{C}]$ factors as

Free
$$\mathbb{S} \xrightarrow{\eta_{\mathbb{S}}} W[C[Free \mathbb{S}]] -$$

for a unique functor of categories $q : C[Free S] \rightarrow \mathbb{C}$.

The CFG Univ_{S.S} = (C[Free S],S, η_S) is therefore "universal", in the sense that any other CFG G = (\mathbb{C} ,S,p) with the same species and start symbol is obtained uniquely as the functorial image $G = q Univ_{SS}$.

The language generated by $Univ_{S,S}$ is a language of tree contour words.

$\xrightarrow{\mathsf{W}[\mathsf{q}]} \mathsf{W}[\mathbb{C}]$

A tree contour word over a species \mathbb{S}

Idea of the representation theorem

Separate the generation of a CF language into three pieces:

- 1. generate "uncolored" contour words describing shapes of S-trees;
- 2. use an automaton to check that the contour words denote well-colored S-trees with root color S;
- 3. interpret each corner of the contour as an appropriate arrow.

Another basic fact about species

Any map of species $\varphi : \mathbb{S} \rightarrow \mathbb{R}$ factors as:

$$\mathbb{S} \xrightarrow[\text{id on nodes}]{\phi_{colors}} \phi_{C} \mathbb{S} \xrightarrow[\text{id on colors}]{\phi_{nodes}}$$

In particular, we can apply this factorization to the underlying map of species $\varphi : \mathbb{S} \to W[\mathbb{C}]$ of a given CFG of arrows.

The functor $C[\varphi_{colors}] : C[S] \rightarrow C[\varphi_C S]$ paired with the states S^u and S^d defines an automaton on contour words!

R

The proof in a diagram

*The naturality square is not a pullback, but the canonical functor Free $\mathbb{S} \rightarrow$ Free \mathbb{R} to the pullback is fully faithful, hence we can apply the translation principle!

η_{ϕ_C} s W[C[Free φ_{C} S]]

From contour words to Dyck words

5. Example

Colors / nodes factorization

loves_-id

Translation of corners

 $1_0 \mapsto id$ $1_2 \mapsto id$ $2_{\odot} \mapsto \text{mom}$ $3_{\odot} \mapsto \text{tom}$ $4_0 \mapsto loves_u$ $4_1 \mapsto id$

 $C[\phi_C S] \longrightarrow \mathbb{B}_{\Sigma}$

Uncolored tree contour words

Coloring automaton

6. Conclusion

Summary and future directions

Both CFGs and NDFAs may be naturally represented as functors, and generalized to define context-free / regular languages of arrows in a category.

Parsing may be naturally formulated as a lifting problem.

The Chomsky-Schützenberger Representation Theorem is deeply related to an elementary "contour / splicing" adjunction between operads and categories.

Are there other applications of spliced arrow operads and contour categories?

Next on our agenda: pushdown automata and LR parsing!