
Functors are Type Refinement Systems

Paul-André Melliès1 Noam Zeilberger2

1CNRS, Université Paris Diderot, Sorbonne Paris Cité

2MSR-Inria Joint Centre

POPL 2015, Mumbai, India
15 January 2015

1 / 35



Complete the sequence

I number theory is about numbers
I group theory is about groups
I category theory is about categories
I type theory is about

types!

But what on earth are types?

2 / 35



Complete the sequence

I number theory is about numbers
I group theory is about groups
I category theory is about categories
I type theory is about types!

But what on earth are types?

2 / 35



Complete the sequence

I number theory is about numbers
I group theory is about groups
I category theory is about categories
I type theory is about types!

But what on earth are types?

2 / 35



The intrinsic (“à la Church”) view

Sometimes, a type is like a linguist’s part of speech, in the
sense that parts of speech (NP, VP, etc.) can be used to
distinguish well-formed sentences like

the quick brown fox jumped over the lazy dog

from non-sentences such as

* lazy over dog fox quick the brown jumped the

Under this usage, every valid program expression carries a
type, and “untyped” expressions are considered meaningless.

3 / 35



The extrinsic (“à la Curry”) view

On the other hand, in natural language sometimes one wants to
consider sentences such as

colourless green ideas sleep furiously
or

the king of India in 2014 was bald

which although syntactically well-formed, fail to satisfy other
more semantic criteria of validity. Similarly, in programming
sometimes one wants to start with a relatively liberal
programming language, but then use types to ensure that
programs are in some sense well-behaved.

4 / 35



Two views of typing

John Reynolds referred to these as the intrinsic and the
extrinsic views of typing in his book, Theories of Programming
Languages.

(Also known as “types à la Church” and “types à la Curry”.)

5 / 35



TT through the lens of CT: the standard dogma

A type system induces a category of well-typed terms, e.g., any
well-typed term

x1 : A1, . . . , xn : An ` e : B

of the simply-typed lambda calculus may be interpreted as a
morphism

A1 × · · · × An
e // B

in a cartesian-closed category [see Lambek and Scott 1986].

6 / 35



TT through the lens of CT: the standard dogma

The standard dogma favors the intrinsic view: any morphism

A f // B

of a category is intrinsically associated with a unique pair of
types, namely dom(f) = A and cod(f) = B.

7 / 35



A hiccup in the standard dogma

But what about, say, intersection types or subtyping?

Γ ` e : B Γ ` e : C
Γ ` e : B ∩ C

Γ ` e : B B ≤ C
Γ ` e : C

In a category, it is ungrammatical for one morphism to lie
between different pairs of objects.

*
Γ

e // B
Γ

e // C

What Reynolds originally observed is that an intrinsic semantics
for such a type system must really interpret typing derivations
rather than terms. But this leads to questions of coherence1...

1Do two derivations of the same typing judgment have the same meaning?
8 / 35



“The Meaning of Types” (Reynolds 2000)

In later work, Reynolds gave a very elegant proof of coherence
for a language with subtyping. The proof begins by defining
both an intrinsic semantics and an extrinsic semantics, and
then connects them via a logical relations theorem and a
“bracketing” theorem (with coherence as a corollary).

Although JCR did not work in the language of category theory
(in the 2000 paper), these semantics can be seen as functors

~−�D : Derivations→ Meanings
~−�T : Terms→ Meanings

9 / 35



“The Meaning of Types” (Reynolds 2000)

But any “reasonable” type system also induces a functor

Derivations

U
��

Terms

and this is also implicit in Reynolds’ analysis (e.g., in the
statement of the logical relations theorem and coherence).

10 / 35



Functors are type refinement systems

Our starting point is the idea that this can actually serve as a
working definition of “type system” (or refinement system).

Definition

A (type) refinement system is a functor U : D→ T .

This is a “working” definition in the sense that
1. We have been working with it for a while.
2. It allows one to prove some interesting things about broad

classes of type systems.
3. It is open to revision.

11 / 35



Reading a functor as a refinement system

12 / 35



Definition

We say that an object S ∈ D refines2 an object A ∈ T if
U(S) = A .

D

U

��
T

S T
U

A B C

S ,T @ A
U @ C

2With a tip of the hat to Tim Freeman & Frank Pfenning.
13 / 35



Definition

A typing judgment is a triple (S , f ,T) such that S and T refine
the domain and codomain of f , respectively, i.e., such that
f : A → B, U(S) = A and U(T) = B, for some arbitrary A and
B. In the special case of a triple with component f = id, we also
call this a subtyping judgment.

D

U

��
T

S
T U

A B C

V

f

S =⇒
f

T U ≤ V

14 / 35



Definition

A derivation of a typing judgment (S , f ,T) is a morphism
α : S → T in D such that U(α) = f .

D

U

��
T

S
T U

A B C

V

f

α β

α
S =⇒

f
T

β
U ≤ V

15 / 35



A convention for typing rules

We say that a typing rule

S1 =⇒
f1

T1 · · · Sn =⇒
fn

Tn

S =⇒
f

T

is valid (for U : D→ T ) if given derivations of the premises, we
can construct a derivation of the conclusion...

16 / 35



Proposition

The following typing rules are valid for any refinement system:

S =⇒
f

T T =⇒
g

U

S =⇒
f ;g

U
;

S =⇒
id

S id

Proposition

Subtyping is reflexive and transitive, and admits rules of
covariant and contravariant subsumption:

S ≤ S
S ≤ T T ≤ U

S ≤ U

S =⇒
f

T T ≤ U

S =⇒
f

U

S ≤ T T =⇒
g

U

S =⇒
g

U

17 / 35



Reading Grothendieck in translation

18 / 35



Definition

A pullback of T along f is a refinement type f ∗ T

f : A → B T @ B
f ∗ T @ A

equipped with a pair of typing rules

f ∗ T =⇒
f

T Lf ∗
S =⇒

g;f
T

S =⇒
g

f ∗ T Rf ∗

satisfying equations

β
S =⇒

g;f
T

S =⇒
g

f ∗ T
Rf ∗

f ∗ T =⇒
f

T
Lf ∗

S =⇒
g;f

T
; =

β
S =⇒

g;f
T

η
S =⇒

g
f ∗ T =

η
S =⇒

g
f ∗ T f ∗ T =⇒

f
T

Lf ∗

S =⇒
g;f

T
;

S =⇒
g

f ∗ T
Rf ∗

19 / 35



Definition

A pushforward of S along f is a refinement type f S

S @ A f : A → B
f S @ B

equipped with a pair of typing rules

S =⇒
f ;g

T

f S =⇒
g

T Lf S =⇒
f

f S Rf

satisfying equations

S =⇒
f

f S
Rf

β
S =⇒

f ;g
T

f S =⇒
g

T
Lf

S =⇒
f ;g

T
; =

β
S =⇒

f ;g
T

η
f S =⇒

g
T =

S =⇒
f

f S
Rf

η
f S =⇒

g
T

S =⇒
f ;g

T
;

f S =⇒
g

T
Lf

20 / 35



Fact: a functor U : D→ T is a fibration iff a pullback
(f ∗ T ,Lf ∗ ,Rf ∗ ) exists for all f : A → B and T @ B. It is a
bifibration iff all pullbacks and pushforwards exist.

Proof: essentially immediate by unwinding definitions.

21 / 35



Proposition

Whenever the corresponding pullbacks exist:
1. the following subtyping rule is valid:

T1 ≤ T2

f ∗ T1 ≤ f ∗ T2

2. we have
(g; f)∗ T ≡ g∗ f ∗ T id∗ T ≡ T

22 / 35



f ∗ T1 =⇒
f

T1
Lf ∗ T1 ≤ T2

f ∗ T1 =⇒
f ;id

T2
;

f ∗ T1 =⇒
id;f

T2
∼

f ∗ T1 ≤ f ∗ T2
Rf ∗

23 / 35



A few examples of refinement systems

24 / 35



Example: subsets over sets

Let T = Set be the category of sets and functions, and let
D = SubSet be the category whose objects are pairs

(A ,S ⊆ A)

and whose morphisms

(A ,S)→ (B ,T)

are functions f : A → B such that

∀a.a ∈ S ⇒ f(a) ∈ T

Then consider the projection functor U : SubSet→ Set.

Observe: pullback = inverse image, pushforward = image

25 / 35



Example: Hoare Logic

Take T as a category with one object W corresponding to the
state space, and with morphisms c : W →W corresponding to
commands-as-state-transformers.

Define D and U : D→ T so that refinements φ @W are state
predicates, and a derivation of a typing judgment

φ =⇒
c
ψ

corresponds exactly to a verification of a Hoare triple {φ}c{ψ}.

Observations:
I usual rules of sequential composition, pre-strengthening

and post-weakening are valid (see slide 17)
I pullback = weakest pre, pushforward = strongest post

26 / 35



Example: STLC à la Curry (after Scott)

Take T as a ccc including an object U and a pair of operations

U
app // UU

lam
oo

Take D as a ccc including a collection of simple types

σ, τ, fn[σ, τ], . . .

together with morphisms

fn[σ, τ]
Appσ,τ // τσ
Lamσ,τ

oo

Define U : D→ T (as a cartesian closed functor) by

σ, τ, . . . 7→ U Appσ,τ 7→ app Lamσ,τ 7→ lam

27 / 35



Example: refining a point

Any category determines a trivial refinement system:

C

!C
��
1

28 / 35



What next?

29 / 35



In the paper, we describe various ways of taking these basic
ideas further, including a bit of discussion of Separation Logic,
and culminating in a rational reconstruction of Reynolds’ (2000)
proof of coherence for a language with subtyping.

In ongoing work, we are exploring how this framework can be
applied towards a better understanding of dependent types and
effects, as well as the proof theory of linear logic.

30 / 35



We like the slogan that

functors are type refinement systems

in part because it works both ways: on the one hand it brings
some basic mathematical tools to bear on type theory, but it
also suggests a broader scope for type-theoretic reasoning.

Making it more than a slogan will require a lot of work, and we
would love some help!

31 / 35



Bonus slides

32 / 35



Separation Logic

Separating conjunction and magic wand:

φ ∗ ψ
def
= ~ (φ • ψ) φ −∗ τ

def
= λ[~]∗ (φ \ τ)

(but also Day convolution)

Condition equivalent to the Frame Rule:

φ ∗ c∗ ψ ≤ c∗ (φ ∗ ψ)

33 / 35



Reynolds 2000

The logical relations theorem:

D
ρ //

(0)

DRel

∂0
��

D
~−�D

// Dom

D
ρ //

U
��

(1)

DRel

∂1
��

T
~−�T

// Dom

If
α

θ1 =⇒
p
θ2 then ` ρ[θ1] =⇒

(~α�,~p�)
ρ[θ2].

34 / 35



(case α = NI)

∆[N⊥] =⇒
(i,i)

∆[Z⊥]
∆[i]

(id, i) ∆[N⊥] =⇒
(i,id)

∆[Z⊥]
L(id, i)

(id,Ψp)∗ (id, i) ∆[N⊥] =⇒
(i,id)

(id,Ψp)∗∆[Z⊥]
(fun)

ρ[nat ] =⇒
(~NI�,~id�)

ρ[int ]

(case α = Lam)

ρ[θ2]ρ[θ1] =⇒
(id,id)

ρ[θ2]ρ[θ1]
id

ρ[θ2]ρ[θ1] =⇒
(id,(Φf;Ψf))

ρ[θ2]ρ[θ1]
∼

ρ[θ2]ρ[θ1] =⇒
(id,Φf)

(id,Ψf)
∗ ρ[θ2]ρ[θ1]

R(id,Ψf)
∗

ρ[θ2
θ1 ] =⇒

(~Lam�,~lam�)
ρ[fn[θ1, θ2]]

35 / 35


	Reading a functor as a refinement system
	Reading Grothendieck in translation
	A few examples of refinement systems
	What next?
	Bonus slides

