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Part One:
Background and Motivation

3

1

11

2

7

6

9

4

5

12

8
10

λ
@



Topological definition

map = 2-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.

*All surfaces are assumed to be connected and oriented throughout this talk



3

1

11

2

7

6

9

4

5

12

8
10

Algebraic definition

map = transitive permutation representation of the group

Note: can compute genus from Euler characteristic

considered up to G-equivariant isomorphism.

G = 



Combinatorial definition

map = connected graph + cyclic ordering of the
half-edges around each vertex (say, as given by
a planar drawing with "virtual crossings").
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Some special kinds of maps

planar

bridgeless

3-valent



Four Colour Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring



Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.

One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. I gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It



One of his insights was to consider rooted maps

Tutte wrote a pioneering series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21–38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402–417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708–722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249–271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64–74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454–460

Key property: rooted maps have
no non-trivial automorphisms

Map enumeration



Some enumerative connections

family of rooted maps family of lambda terms sequence OEIS

trivalent maps (genus g≥0)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps
maps (genus g≥0)
planar maps
bridgeless maps
bridgeless planar maps

linear terms
planar terms
unit-free linear terms
unit-free planar terms
normal linear terms (mod ~)
normal planar terms
normal unit-free linear terms (mod ~)
normal unit-free planar terms

A062980
A002005
A267827
A000309
A000698
A000168
A000699
A000260

1,5,60,1105,27120,...
1,4,32,336,4096,...
1,2,20,352,8624,...
1,1,4,24,176,1456,...
1,2,10,74,706,8162,...
1,2,9,54,378,2916,...
1,1,4,27,248,2830,...
1,1,3,13,68,399,...

OEIS = Online Encyclopedia of Integer Sequences (oeis.org)

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238
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2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
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(conceptual background for LICS paper)



Represent a term as a "tree with pointers", with
lambda nodes pointing to the occurrences of
the corresponding bound variable (or conversely).

This old idea is especially natural for linear terms.

Representing terms as graphs
(an idea from the folklore)



R. Statman (1974), Structural Complexity of Proofs, PhD Thesis, Stanford University

Representing proofs as graphs
(a closely related idea)

J.-Y. Girard (1987), Linear Logic, Theoretical Computer Science



λ-graphs as string diagrams

@

Idea (after D. Scott): a linear lambda term may be interpreted as an
endomorphism of a reflexive object in a symmetric monoidal closed (bi)category.

By interpreting this morphism in the graphical language of compact closed (bi)categories,
we obtain the traditional diagram associated to the linear lambda term.

λ
@

λ



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



Diagrams versus Terms

Note: two different diagrams can correspond to the same underlying map.

Indeed, a diagram is just a 3-valent map + a proper orientation.

Proposition: every rooted 3-valent map has a unique orientation
corresponding to the diagram of a linear lambda term.



Observation: any rooted 3-valent map must have one of the following forms.

Rooted 3-valent maps, inductively

T1 T2 T1

disconnecting
root vertex

connecting
root vertex

no
root vertex



...but this exactly mirrors the inductive structure of linear lambda terms!

Linear lambda terms, inductively

application abstraction variable

T1 T2 T1



An example



An example

connecting



An example



An example



An example



An example

disconnecting



An example



An example

λa.λb.λc.λd.λe.a(λf.c(e(b(df))))



An operadic perspective

Let Θ(n) = set of isomorphism classes of rooted 3-valent maps
with n non-root boundary arcs.

Θ defines a symmetric operad equipped with operations

@ : Θ(m) × Θ(n) → Θ(m+n)

naturally isomorphic to the operad of linear lambda terms.

λᵢ : Θ(m+1) → θ(m)   [1 ≤ i ≤ m+1]



An operadic perspective

Moreover, Θ has some natural suboperads:

Θ₀ = the non-symmetric operad of planar 3-valent maps

Θ² = the constant-free operad of bridgeless maps

= ordered linear lambda terms (i.e., no exchange rule)

= linear terms with no closed subterms ("unitless")

Θ² = rooted bridgeless planar 3-valent maps₀
= ordered linear terms with no closed subterms



Linear typing

x : A ⊢ x : A

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B

Γ, x : A, y : B, Δ ⊢ t : C

Γ, y : B, x : A, Δ ⊢ t : C

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B



x : A ⊢ x : A

Γ, x : A, y : B, Δ ⊢ t : C

Γ, y : B, x : A, Δ ⊢ t : C

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B

Imagine (because why not?) that we
draw types from the Klein Four Group
𝕍 = ℤ₂ × ℤ₂, with A ⊸ B := B - A.

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B

Linear typing

Claim: Every unitless ordered linear term has a 𝕍-typing such that
no subterm is assigned the unit type (0,0).



x : A ⊢ x : A

Γ, x : A, y : B, Δ ⊢ t : C

Γ, y : B, x : A, Δ ⊢ t : C

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B

Claim: Every unitless ordered linear term has a 𝕍-typing such that
no subterm is assigned the unit type (0,0).

Imagine (because why not?) that we
draw types from the Klein Four Group
𝕍 = ℤ₂ × ℤ₂, with A ⊸ B := B - A.

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B

Linear typing

Proof: This is equivalent to 4CT.

punchline: linear typing is more subtle
than you think!



Part Two:
Idea of the Paper
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A flow on an oriented graph, valued in an ab gp G, is an assignment φ : E → G such that

Flows and nowhere-zero flows

  ∑    φ(x) =   ∑      φ(x)
x∈in(v)        x∈out(v)        

holds at every vertex v ∈ V.

(Kirchhoff's law)

A flow φ is nowhere-zero if φ(x) ≠ 0 for all x ∈ E.

W. T. Tutte (1954). A contribution to the theory of chromatic polynomials.

Behind the scenes, what the lambda calculus formulation of 4CT really does is express
the existence of a nowhere-zero 𝕍-flow as a typing problem.



Flows and nowhere-zero flows
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a ℤ₃-flow a nowhere-zero ℤ-flow

W. T. Tutte (1954). A contribution to the theory of chromatic polynomials.

Behind the scenes, what the lambda calculus formulation of 4CT really does is express
the existence of a nowhere-zero 𝕍-flow as a typing problem.



Linear typings as flows

Goal: develop a more general theory of linear typings-as-flows on 3-valent maps.

The LICS paper represents a preliminary exploration of such a theory, starting from
the idea of replacing abelian groups by more general algebraic objects I call "imploids".

An imploid is just a preordered set equipped with an "implication" operation ⊸ and
element I satisfying three natural laws of composition, identity, and unit.

(Another name for an imploid is a [skew-]closed preorder).



Linear typings as flows

Imploid-valued flows are defined by the following pair of local flow relations:

a⊸b ≤ c

c ≤ a⊸b

ab

b a

This notion makes sense for any well-oriented 3-valent map, but in the case of
a linear lambda term it specializes to standard linear typing (with subtyping).

Also, we can speak of nowhere-unit flows (typings) as flows (typings) where no
edge (subterm) is assigned a value above I.



Linear typings as flows

The paper mainly addresses two questions:

1. When does a well-oriented 3-valent map satisfy the global extension property?

2. How do moves such as β-reduction and η-expansion act on flows?

Additionally, the paper briefly discusses a polarized notion of flow, which draws
connections to the theory of proof-nets in linear logic and to bidirectional typing.



The global extension property
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For classical (abelian group-valued) flows, it is easy to show that Kirchhoff's law
extends to any induced subgraph.

5 = 2 + 1 + 2

Corollary: any graph with a bridge cannot have a nowhere-zero flow.



The global extension property

For imploid-valued flows, we can similarly ask whether the local flow conditions
may be lifted to a global flow relation across the boundary.

I ≤ a₁ ⊸ a₂ ⊸ a₃ ⊸ a₄ ⊸ b

Theorem: T has the global extension property with respect to all symmetric imploids
iff T has the unique orientation of a linear lambda term.
(In the planar case the symmetry condition may be dropped.)

T

b

a1

a2 a3

a4



Rewriting of flows

In general, flows can be pulled back across rewriting moves like β-reduction and
η-expansion, but not necessarily pushed forward.

Theorem (roughly): there are a finite set of imploid moves which generate all rooted
3-valent maps with their unique orientations as linear lambda terms.  (This is closely
related to the "BCI" completeness theorem in combinatory logic.)

We refer to moves admitting such a pullback interpretation as "imploid moves".



Part Three:
One More Example
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The Tutte Graph
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The associated lambda term

β-redex
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The principal polarized flow

type variables

type constraint
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A 𝕍-typing

a = d = g = m = o = r = u = w = y = R
b = f = i = j = k = l = s = t = v = G

c = e = h = n = p = q = x =B
β : G = G



The End

λ...or is it?


