

(@)

Background and Motivation

(5.1) The number a_{n} of rooted maps with n edges is

$$
\frac{2(2 n)!3^{n}}{n!(n+2)!}
$$

We write

$$
A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

Thus $A(x)=2 x+9 x^{2}+54 x^{3}+378 x^{4}+$
Figure 2 shows the 2 rooted maps with 1 edge, and Figure 3 the 9 rooted maps with 2 edges.

Topological definition

map $=2$-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.
*All surfaces are assumed to be connected and oriented throughout this talk

Algebraic definition

map $=$ transitive permutation representation of the group

$$
\mathrm{G}=\left\langle v, e, f \mid e^{2}=v e f=1\right\rangle
$$

considered up to G-equivariant isomorphism.

$$
\begin{aligned}
& v=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)(456)(789)(101112) \\
& e=(18)(211)(34)(512)(67)(910) \\
& f=(17511)(2108369124)
\end{aligned}
$$

Note: can compute genus from Euler characteristic

$$
c(v)-c(e)+c(f)=2-2 g
$$

Combinatorial definition

map $=$ connected graph + cyclic ordering of the half-edges around each vertex (say, as given by a planar drawing with "virtual crossings").

Some special kinds of maps

3-valent

Four Colour Theorem

The 4CT is a statement about maps.
every bridgeless planar map has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent to a statement about 3-valent maps
every bridgeless planar 3-valent map has a proper edge 3-coloring

Map enumeration

From time to time in a graph-theoretical career one's thoughts turn to the Four Colour Problem. It occurred to me once that it might be possible to get results of interest in the theory of map-colourings without actually solving the Problem. For example, it might be possible to find the average number of colourings on vertices, for planar triangulations of a given size.

One would determine the number of triangulations of $2 n$ faces, and then the number of 4 -coloured triangulations of $2 n$ faces. Then one would divide the second number by the first to get the required average. I gathered that this sort of retreat from a difficult problem to a related average was not unknown in other branches of Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It

Map enumeration

Tutte wrote a pioneering series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21-38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402-417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708-722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249-271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64-74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454-460

One of his insights was to consider rooted maps

Key property: rooted maps have no non-trivial automorphisms

Some enumerative connections

family of rooted maps	family of lambda terms	sequence	OEIS
trivalent maps (genus $g \geq 0$)	linear terms	$1,5,60,1105,27120, \ldots$	A062980

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238

Some enumerative connections

family of rooted maps
trivalent maps (genus $g \geq 0$)
planar maps
-
sequence
$1,5,60,1105,27120, \ldots$
$1,2,9,54,378,2916, \ldots \quad$ A000168

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCl and BCK lambda terms, TCS 502: 227-238
2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39

Some enumerative connections

family of rooted maps

trivalent maps (genus $\mathrm{g} \geq 0$)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps
maps (genus $\mathrm{g} \geq 0$)
planar maps
bridgeless maps
bridgeless planar maps

family of lambda terms

linear terms
planar terms
unitless linear terms unitless planar terms normal linear terms (mod ~) normal planar terms normal unitless linear terms (mod ~) normal unitless planar terms

sequence

1,5,60,1105,27120,... A062980
1,4,32,336,4096,.. A002005
1,2,20,352,8624,.. A267827
$1,1,4,24,176,1456, \ldots \quad$ A000309
1,2,10,74,706,8162,... A000698
1,2,9,54,378,2916,... A000168
1,1,4,27,248,2830,... A000699
$1,1,3,13,68,399, \ldots$ A000260

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCl and BCK lambda terms, TCS 502: 227-238
2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
3. Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596
4. Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21)
5. J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps, arXiv:1611.04611
6. Z (2017), A sequent calculus for a semi-associative law, FSCD

OEIS = Online Encyclopedia of Integer Sequences (oeis.org)

Some enumerative connections

(conceptual background for LICS paper)

family of rooted maps

trivalent maps (genus $g \geq 0$)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps
maps (genus $\mathrm{g} \geq 0$)
planar maps
bridgeless maps
bridgeless planar maps

family of lambda terms

linear terms
planar terms
unitless linear terms
unitless planar terms
normal linear terms (mod ~)
normal planar terms
normal unitless linear terms (mod \sim)
normal unitless planar terms

sequence

1,5,60,1105,27120,... A062980
1,4,32,336,4096,... A002005
1,2,20,352,8624,... A267827
$1,1,4,24,176,1456, \ldots$
$1,2,10,74,706,8162, .$.
1,2,9,54,378,2916,..
1,1,4,27,248,2830,.
1,1,3,13,68,399,.

A000309
OEIS

A000698
A000168
A000699
A000260

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCl and BCK lambda terms, TCS 502: 227-238
2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-39
3. Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596
4. Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21)
5. J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps, arXiv:1611.04611
6. Z (2017), A sequent calculus for a semi-associative law, FSCD

OEIS = Online Encyclopedia of Integer Sequences (oeis.org)

Representing terms as graphs (an idea from the folklore)

Represent a term as a "tree with pointers", with lambda nodes pointing to the occurrences of the corresponding bound variable (or conversely).

This old idea is especially natural for linear terms.

Representing proofs as graphs (a closely related idea)

Fig. 57(b). The number " 3 " represented in PN2.

λ-graphs as string diagrams

Idea (after D. Scott): a linear lambda term may be interpreted as an endomorphism of a reflexive object in a symmetric monoidal closed (bi)category.

$$
U \underset{\lambda}{\stackrel{\ominus}{\lambda}} U \multimap U
$$

By interpreting this morphism in the graphical language of compact closed (bi)categories, we obtain the traditional diagram associated to the linear lambda term.

From linear terms to rooted 3-valent maps via string diagrams

$\lambda x . \lambda y . \lambda z . x(y z) \quad \lambda x . \lambda y . \lambda z .(x z) y$

$x, y \vdash(x y)(\lambda z . z) \quad x, y \vdash x((\lambda z . z) y)$

From linear terms to rooted 3-valent maps via string diagrams

$\lambda x . \lambda y . \lambda z . x(y z) \quad \lambda x . \lambda y . \lambda z .(x z) y$

$x, y \vdash(x y)(\lambda z . z) \quad x, y \vdash x((\lambda z . z) y)$

Diagrams versus Terms

Note: two different diagrams can correspond to the same underlying map.

Indeed, a diagram is just a 3-valent map + a proper orientation.
Proposition: every rooted 3-valent map has a unique orientation corresponding to the diagram of a linear lambda term.

Rooted 3-valent maps, inductively

Observation: any rooted 3-valent map must have one of the following forms.

disconnecting root vertex

connecting root vertex

no
root vertex

Linear lambda terms, inductively

...but this exactly mirrors the inductive structure of linear lambda terms!

application

abstraction

variable

An example

An example

An example

An example

An example

An example

An example

An example

$\lambda a . \lambda b . \lambda c . \lambda d . \lambda e . a(\lambda f . c(e(b(d f))))$

An operadic perspective

Let $\Theta(n)=$ set of isomorphism classes of rooted 3-valent maps with n non-root boundary arcs.
Θ defines a symmetric operad equipped with operations

$$
\begin{aligned}
& @: \Theta(m) \times \Theta(n) \rightarrow \Theta(m+n) \\
& \lambda_{i}: \Theta(m+1) \rightarrow \theta(m) \quad[1 \leq i \leq m+1]
\end{aligned}
$$

naturally isomorphic to the operad of linear lambda terms.

An operadic perspective

Moreover, Θ has some natural suboperads:
$\Theta_{0}=$ the non-symmetric operad of planar 3-valent maps
= ordered linear lambda terms (i.e., no exchange rule)
$\Theta^{2}=$ the constant-free operad of bridgeless maps
= linear terms with no closed subterms ("unitless")
$\Theta_{0}^{2}=$ rooted bridgeless planar 3-valent maps
= ordered linear terms with no closed subterms

Linear typing

$$
\frac{\Gamma \vdash \mathrm{t}: \mathrm{A} \multimap \mathrm{~B} \quad \Delta \vdash \mathrm{u}: \mathrm{A}}{\Gamma, \Delta \vdash \mathrm{tu}: \mathrm{B}} \quad \frac{\Gamma, \mathrm{x}: \mathrm{A} \vdash \mathrm{t}: \mathrm{B}}{\Gamma \vdash \lambda \mathrm{x} \cdot \mathrm{t}: \mathrm{A} \multimap \mathrm{~B}} \quad \frac{}{\mathrm{x}: \mathrm{A} \vdash \mathrm{x}: \mathrm{A}}
$$

$$
\frac{\Gamma, y: B, x: A, \Delta \vdash t: C}{\Gamma, x: A, y: B, \Delta \vdash t: C}
$$

Linear typing

$$
\frac{\Gamma \vdash \mathrm{t}: \mathrm{A} \multimap \mathrm{~B} \quad \Delta \vdash \mathrm{u}: \mathrm{A}}{\Gamma, \Delta \vdash \mathrm{tu}: \mathrm{B}} \quad \frac{\Gamma, \mathrm{x}: \mathrm{A} \vdash \mathrm{t}: \mathrm{B}}{\Gamma \vdash \lambda \mathrm{x} . \mathrm{t}: \mathrm{A} \multimap \mathrm{~B}} \quad \overline{\mathrm{x}: \mathrm{A} \vdash \mathrm{x}: \mathrm{A}}
$$

Imagine (because why not?) that we draw types from the Klein Four Group $\mathbb{V}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, with $\mathrm{A} \rightarrow \mathrm{B}:=\mathrm{B}-\mathrm{A}$.

$$
\frac{\Gamma, y: B, x: A, \Delta \vdash t: C}{\Gamma, x: A, y: B, \Delta \vdash t: C}
$$

Claim: Every unitless ordered linear term has a V-typing such that no subterm is assigned the unit type $(0,0)$.

Linear typing

$$
\frac{\Gamma \vdash \mathrm{t}: \mathrm{A} \multimap \mathrm{~B} \quad \Delta \vdash \mathrm{u}: \mathrm{A}}{\Gamma, \Delta \vdash \mathrm{tu}: \mathrm{B}} \quad \frac{\Gamma, \mathrm{x}: \mathrm{A} \vdash \mathrm{t}: \mathrm{B}}{\Gamma \vdash \lambda \mathrm{x} \cdot \mathrm{t}: \mathrm{A} \multimap \mathrm{~B}} \quad \frac{\mathrm{x}: \mathrm{A} \vdash \mathrm{x}: \mathrm{A}}{}
$$

Imagine (because why not?) that we draw types from the Klein Four Group $\mathbb{V}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, with $\mathrm{A} \rightarrow \mathrm{B}:=\mathrm{B}-\mathrm{A}$.

$$
\frac{\Gamma, y: B, x: A, \Delta \vdash t: C}{\Gamma, x: A, y: B, \Delta \vdash t: C}
$$

Claim: Every unitless ordered linear term has a \mathbb{V}-typing such that no subterm is assigned the unit type (0,0).

Proof: This is equivalent to 4CT.
punchline: linear typing is more subtle than you think!

Part Two:
 Idea of the Paper

Proposition 4.2. The following are imploid moves:

Flows and nowhere-zero flows

Behind the scenes, what the lambda calculus formulation of 4CT really does is express the existence of a nowhere-zero \mathbb{V}-flow as a typing problem.
W. T. Tutte (1954). A contribution to the theory of chromatic polynomials.

A flow on an oriented graph, valued in an ab gp G , is an assignment $\varphi: E \rightarrow G$ such that

$$
\left.\sum_{x \in \operatorname{in}(v)} \varphi(x)=\sum_{x \in \text { out }(v)} \varphi(x) \quad \text { (Kirchhoff's law }\right)
$$

holds at every vertex $v \in \mathrm{~V}$. A flow φ is nowhere-zero if $\varphi(\mathrm{x}) \neq 0$ for all $\mathrm{x} \in \mathrm{E}$.

Flows and nowhere-zero flows

Behind the scenes, what the lambda calculus formulation of 4CT really does is express the existence of a nowhere-zero \mathbb{V}-flow as a typing problem.
W. T. Tutte (1954). A contribution to the theory of chromatic polynomials.

a \mathbb{Z}_{3}-flow

a nowhere-zero \mathbb{Z}-flow

Linear typings as flows

Goal: develop a more general theory of linear typings-as-flows on 3-valent maps.
The LICS paper represents a preliminary exploration of such a theory, starting from the idea of replacing abelian groups by more general algebraic objects I call "imploids".

An imploid is just a preordered set equipped with an "implication" operation \rightarrow and element I satisfying three natural laws of composition, identity, and unit.
(Another name for an imploid is a [skew-]closed preorder).

Linear typings as flows

Imploid-valued flows are defined by the following pair of local flow relations:

This notion makes sense for any well-oriented 3-valent map, but in the case of a linear lambda term it specializes to standard linear typing (with subtyping).

Also, we can speak of nowhere-unit flows (typings) as flows (typings) where no edge (subterm) is assigned a value above I.

Linear typings as flows

The paper mainly addresses two questions:

1. When does a well-oriented 3-valent map satisfy the global extension property?
2. How do moves such as $\boldsymbol{\beta}$-reduction and $\boldsymbol{\eta}$-expansion act on flows?

Additionally, the paper briefly discusses a polarized notion of flow, which draws connections to the theory of proof-nets in linear logic and to bidirectional typing.

The global extension property

For classical (abelian group-valued) flows, it is easy to show that Kirchhoff's law extends to any induced subgraph.

Corollary: any graph with a bridge cannot have a nowhere-zero flow.

The global extension property

For imploid-valued flows, we can similarly ask whether the local flow conditions may be lifted to a global flow relation across the boundary.

Theorem: T has the global extension property with respect to all symmetric imploids iff T has the unique orientation of a linear lambda term.
(In the planar case the symmetry condition may be dropped.)

Rewriting of flows

In general, flows can be pulled back across rewriting moves like β-reduction and η-expansion, but not necessarily pushed forward.

We refer to moves admitting such a pullback interpretation as "imploid moves".
Theorem (roughly): there are a finite set of imploid moves which generate all rooted 3 -valent maps with their unique orientations as linear lambda terms. (This is closely related to the " BCI " completeness theorem in combinatory logic.)

Part Three:

One More Example

The Tutte Graph

(From W. T. Tutte, "On Hamiltonian Circuits", Journal of the London Mathematical Society 21 (1946), 98-101.)

The associated lambda term

$\lambda a \lambda b \lambda c \lambda d \lambda e \lambda f \lambda g \lambda h \lambda i . a(\lambda j \lambda k .((\lambda l \lambda m \lambda n . b(\lambda o . c(\lambda p . d(l(m((n o) p))))))(\lambda q \lambda r \lambda s . e(\lambda t \cdot f(\lambda u \cdot g(q(r((s t) u)))))))(\lambda v \lambda w \cdot h(\lambda x \cdot i(j((k v))(w x))))))$

The principal polarized flow

A V-typing

