
A Categorical Perspective on
Type Refinement Systems

Noam Zeilberger1

University of Birmingham

Cambridge Logic Seminar
9 December 2016

1Joint work with Paul-André Melliès.
1 / 46

What is a type refinement system?

Intuition: a type refinement system is a type system built over a
typed programming language, as an extra layer of typing.

Examples (90s–10s): DML, SML Cidre, Stardust, Liquid Haskell,
Typed Racket, TypeScript, Flow, ...

2 / 46

What is a type system?

As with many terms shared by large communities, it is
difficult to define “type system” in a way that covers its
informal usage by programming language designers and
implementors but is still specific enough to have any bite.

– Benjamin Pierce (2002), TaPL

3 / 46

What is a type?

One reason it is hard to give a formal definition is because there
are two competing philosophies of types...

“à la Church” vs. “à la Curry”

a.k.a.

intrinsic vs. extrinsic

Intuition from logic: types-as-sorts vs. types-as-predicates

4 / 46

The extrinsic view: an excerpt

We now proceed, in outline, as follows. We define a new
class of expressions which we shall call types; then we say
what is meant by a value possessing a type. Some values
have many types, and some have no type at all. In fact
“wrong” has no type. But if a functional value has a type,
then as long as it is applied to the right kind (type) of
argument it will produce the right kind (type) of result-
which cannot be “wrong”!
– Robin Milner (1978), “A Theory of Type Polymorphism
in Programming”

5 / 46

Problem: the “naive” reading of type theory through the lens of
category theory is biased towards the intrinsic view of typing.

6 / 46

The naive reading

type system ⇒ category of well-typed terms

x :A` t :B ⇒ �A� �x .t� // �B�

7 / 46

The problem with the naive reading

But every morphism f :A→B of a category is intrinsically
associated with a unique pair of types! (Namely, A and B.)

This makes it difficult to interpret extrinsic typing rules such as the
subsumption rule or intersection introduction:

Γ` t :A A≤B
Γ` t :B

Γ` t :A Γ` t :B
Γ` t :A∧B

More fundamentally, the problem is that the naive reading does
not distinguish terms from typing derivations.

8 / 46

A more subtle reading

Define the semantics of a typed language by induction on typing
derivations, then prove a coherence theorem:

if
α

Γ` t :A and
β

Γ` t :A then �α� = �
β
�

: �Γ�→ �A�
In general, coherence is a nontrivial theorem...

Nicely discussed by Reynolds (1991–2000):
Ï The Coherence of Languages with Intersection Types
Ï Theories of Programming Languages (Chs. 15 & 16)
Ï The Meaning of Types: from Intrinsic to Extrinsic Semantics

9 / 46

Our goal: stay naive (rather than subtle), just not too naive!

10 / 46

Functors are type refinement systems

11 / 46

Remembering to forget

Intuitively, most type systems come with an “erasure” operation...

Derivations

��
Terms

Well, what if we take an arbitrary functor U : D →T and try to
view it as a type system? We’ll think of the morphisms of D as
derivations, and the morphisms of T as terms.

That would make a type refinement system, though, wouldn’t
it? Because both D and T have types (= objects), and in some
sense those of D “refine” those of T ...

12 / 46

An example

D

T

oddpos
even

true
false

α

β
γ

δ

nat bool

succ
isEven

odd ,even,pos 7→ nat
true, false 7→ bool

α 7→ idnat

β 7→ succ
γ,δ 7→ isEven

α
odd ≤nat pos

β
odd =⇒

succ
even (odd ,even,pos @ nat)

γ
even =⇒

isEven
true

δ
odd =⇒

isEven
false (true, false@ bool)

13 / 46

An example

D

T

oddpos
even

true
falseα

β
γ

δ

nat bool

succ
isEven

odd ,even,pos 7→ nat
true, false 7→ bool

α 7→ idnat

β 7→ succ
γ,δ 7→ isEven

α
odd ≤nat pos

β
odd =⇒

succ
even (odd ,even,pos @ nat)

γ
even =⇒

isEven
true

δ
odd =⇒

isEven
false (true, false@ bool)

13 / 46

An example

D

��
T

oddpos
even

true
falseα

β
γ

δ

nat bool

succ
isEven

odd ,even,pos 7→ nat
true, false 7→ bool

α 7→ idnat

β 7→ succ
γ,δ 7→ isEven

α
odd ≤nat pos

β
odd =⇒

succ
even (odd ,even,pos @ nat)

γ
even =⇒

isEven
true

δ
odd =⇒

isEven
false (true, false@ bool)

13 / 46

An example

D

��
T

oddpos
even

true
falseα

β
γ

δ

nat bool

succ
isEven

odd ,even,pos 7→ nat
true, false 7→ bool

α 7→ idnat

β 7→ succ
γ,δ 7→ isEven

α
odd ≤nat pos

β
odd =⇒

succ
even (odd ,even,pos @ nat)

γ
even =⇒

isEven
true

δ
odd =⇒

isEven
false (true, false@ bool)

13 / 46

Functors are type refinement systems

D

��
T

R S
T

α β

A B
f

R 7→A
S ,T 7→B

α 7→ f
β 7→ idB

α
R =⇒

f
S

β
S ≤B T (R @A) (S ,T @B)

NB: the functor U : D →T need not be faithful!

14 / 46

The interpretation of typing rules

We call a rule admissible relative to U : D →T if given derivations
of the premises, we can construct a derivation of the conclusion.

Warmup. Show that the following rules are admissible for any U:

R =⇒
f

S S =⇒
g

T

R =⇒
f ;g

T

R =⇒
f

S S ≤T

R =⇒
f

T

R ≤ S S =⇒
g

T

R =⇒
g

T

15 / 46

A basic idea worth exploring...

P.-A. Melliès and I have coauthored several papers around this:
Ï Type refinement and monoidal closed bifibrations arXiv:1310.0263

Ï Functors are type refinement systems POPL2015

Ï An Isbell duality theorem for type refinement systems MSCS (to appear)

Ï A bifib. reconst. of Lawvere’s presheaf hyperdoctrine LICS2016

I also wrote some expository notes for OPLSS 2016 (see webpage)

16 / 46

Outline

Our goals for today:
1. Functors are type refinement systems X
2. Reading Groth. in translation. (Also maybe: ∧ and ∨.)
3. Monoidal closed refinement systems.
4. Using monoidal closed bifibrations as a logical framework.

17 / 46

Reading Grothendieck in translation

18 / 46

Pushforward refinements2

A pushforward of R along f is a refinement

R @A f :A→B
pushf R @B

equipped with a pair of typing rules

R =⇒
f

pushf R
f¦I

R =⇒
f ;g

S

pushf R =⇒
g

S f¦E

satisfying a pair of equations on typing derivations...

2. . . with respect to a given refinement system U : D →T .
19 / 46

Pushforward refinements

...satisfying a pair of equations on typing derivations

R =⇒
f

pushf R
f¦I

β
R =⇒

f ;g
S

pushf R =⇒
g

S f¦E

R =⇒
f ;g

S =
β

R =⇒
f ;g

S

η
pushf R =⇒

g
S =

R =⇒
f

pushf R
f¦I η

pushf R =⇒
g

S

R =⇒
f ;g

S

pushf R =⇒
g

S f¦E

20 / 46

Pullback refinements

A pullback of S along f is a refinement

f :A→B S @B
pullf S @A

equipped with a pair of typing rules

pullf S =⇒
f

S f �E
R =⇒

g ;f
S

R =⇒
g

pullf S
f �I

satisfying the pair of equations on typing derivations...

21 / 46

Pullback refinements

...satisfying the pair of equations on typing derivations

R
β
=⇒
g ;f

S

R =⇒
g

pullf S
f �I pullf S =⇒

f
S f �E

R =⇒
g ;f

S
; = R

β
=⇒
g ;f

S

R
η
=⇒

g
pullf S =

R
η
=⇒

g
pullf S pullf S =⇒

f
S f �E

R =⇒
g ;f

S
;

R =⇒
g

pullf S
f �I

22 / 46

Grothendieck remixed

Proposition/Definition: A refinement system U : D →T is a
fibration iff it has all pullbacks. It is an opfibration iff it has all
pushforwards. It is a bifibration iff it has both.

23 / 46

Grothendieck remixed

In a refinement system D →T with (chosen) pushforwards, each
morphism f :A→B induces a functor pushf : DA →DB ,

R @B f :A→B
pushf R @A

R1 ≤A R2
pushf R1 ≤B pushf R2

where each DA is the subcategory of D consisting of refinements
R @A and subtyping derivations R1 ≤A R2 as morphisms.

24 / 46

Grothendieck remixed

We can derive the subtyping rule explicitly from the typing rules:

R1 =⇒
idA

R2 R2 =⇒
f

pushf R2
f¦I

R1 =⇒
idA;f

pushf R2

R1 =⇒
f ;idB

pushf R2
∼

pushf R1 =⇒
idB

pushf R2
f¦E

25 / 46

Grothendieck remixed

Moreover, we can show that

push(g◦f)R ≡ pushg pushf R pushidR ≡R

where ≡ denotes “vertical” isomorphism, i.e., pairs of subtyping
derivations which compose to the identity.

All this is just another way to say that a (cloven) opfibration
D →T induces a (pseudo)functor T →Cat.

26 / 46

Grothendieck remixed

A RS that is a bifibration admits invertible inferences

pushf R ≤B S
R =⇒

f
S

R ≤A pullf S

meaning that every f :A→B gives rise to an adjunction:

DA

pushf
**

pullf
jj ⊥ DB

27 / 46

Example: SubSet→Set

Formally, the objects of SubSet are pairs (A,R ⊆A), its morphisms
(A,R)→ (B,S) are functions f :A→B such that

∀a.a ∈R ⇒ f (a) ∈ S

and U :SubSet→Set is the projection (A,R) 7→A.

Pushforward and pullback given by image and inverse image:

pushf (A,R)= (B, { f (a) | a ∈R })
pullf (B,S)= (A, {a | f (a) ∈ S })

28 / 46

Other examples of bifibrations

Other typical “semanticky” refinement systems:
Ï Downset→Poset: types = posets, terms = monotone
functions, refinements = downwards closed subsets

Ï Psh→Cat: types = categories, terms = functors, refinements
= presheaves, derivations = natural transformations

Ï Rel• →Rel: like SubSet→Set, but with terms = relations
instead of functions

Ï Dist• →Dist: like Psh→Cat, but with terms = distributors
instead of functors

All of these are bifibrations.

As we will discuss later, these are also examples of (cartesian or
symmetric) monoidal closed refinement systems.

29 / 46

Example: Hoare logic

Take T as a one-object category of commands.

Take D as a category of predicates and valid Hoare triples.

D

��
T

QP
R

α
β

W

c c ′

Now push = strongest post, pull = weakest pre. . . but existence
depends on particular class of commands and predicates!

30 / 46

Union and intersection refinements

A union/intersection of R1 and R2 is a refinement...

R1@A R2@A
R1∨R2@A

R1@A R2@A
R1∧R2@A

R1 =⇒
f

S R2 =⇒
f

S

R1∨R2 =⇒
f

S ∨E Ri =⇒
idA

R1∨R2
∨Ii

R1∧R2 =⇒
idA

Ri
∧Ei

S =⇒
f

R1 S =⇒
f

R2

S =⇒
f

R1∧R2
∧I

...satisfying “β” and “η” equations (analogous to push/pull).

31 / 46

Distributivity principles

We can prove these equivalences in general:

pushf (R ∨S)≡ pushf R ∨pushf S (1)
pullg (R ∧S)≡ pullg R ∧pullg S (2)

But the following hold only going forwards (in general):

pushf (R ∧S)≤ pushf R ∧pushf S (3)
pullg R ∨pullg S ≤ pullg (R ∨S) (4)

(Exercise: find counterexamples going backwards!)

32 / 46

Monoidal closed refinement systems

33 / 46

Monoidal closed refinement systems

The presence of push/pull/∨/∧ is a property of a refinement
system, which can be expressed for any functor U : D →T .

On the other hand, we might ask that D and T come with some
extra structure, and that U preserves that structure.

A monoidal closed refinement system is defined as a strict
monoidal closed functor between monoidal closed categories.

(SMC and CC refinement systems are defined analogously.)

34 / 46

Examples: SubSet→Set and Rel• →Rel

SubSet→Set is a cartesian closed refinement system:

(A,R)× (B,S)= (A×B, {(a,b) | a ∈R ∧b ∈ S })
(A,R)→ (B,S)= (BA, { f | ∀a.a ∈R ⇒ f (a) ∈ S })

Rel• →Rel is a symmetric monoidal closed refinement system:

(A,R)⊗ (B,S)= (A×B, {(a,b) | a ∈R ∧b ∈ S })
(A,R)((B,S)= (A×B, {(a,b) | a ∈R ⇒ b ∈ S })

35 / 46

Refinement vs. typing vs. subtyping

A mc refinement system admits the following refinement rules

R @A S @B
R ⊗S @A⊗B

R @A S @B
R(S @A(B

and typing rules

R1 =⇒
f

R2 S1 =⇒g S2

R1⊗S1 =⇒
f ⊗g

R2⊗S2

R ⊗S =⇒
f

T

S =⇒
curry(f)

R(T

and subtyping rules

R1 ≤A R2 S1 ≤B S2
R1⊗S1 ≤A⊗B R2⊗S2

R2 ≤A R1 S1 ≤B S2
R1(S1 ≤A(B R2(S2

36 / 46

Using monoidal closed bifibrations
as a logical framework

37 / 46

Monoidal closed bifibrations

Of particular interest is when U : D →T is both a mc refinement
system and (independently) a bifibration.
(cf. Hermida, Hasegawa, Katsumata.)

For one, we automatically get some distributivity principles:

push(f ⊗g)(R ⊗S)≡ pushf R ⊗pushg S (5)
pushf R(pullg S ≡ pull(f(g)(R(S) (6)

But the real magic starts to happen when we combine these logical
connectives with specific gadgets in T ...

38 / 46

From Hoare logic to separation logic

Say we want to define separating conjunction and magic wand...

P @W Q@W
P ∗Q@W emp@W

P @W Q@W
P −∗Q@W

Before: W the unique object of a one-object category T

Now: W a monoid object in a monoidal closed category T !3

P ∗Q def= pushm(P ⊗Q)

emp def= pushe I

P −∗Q def= pullcurry(m)(P(Q)

where m :W ⊗W →W and e : I →W are the monoid operations.

3Or a commutative monoid in a smc category if you prefer.
39 / 46

From Hoare logic to separation logic

Modelling4 this signature in Rel• →Rel...

h ∈P ∗Q ⇐⇒ ∃h1,h2.m(h1,h2,h)∧h1 ∈P ∧h2 ∈Q
h ∈P −∗Q ⇐⇒ ∀h′,h′′.m(h,h′,h′′)∧h′ ∈P ⇒ h′′ ∈Q

recovers the standard set-theoretic semantics of separation logic,
where the relation m :W ×W 9W encodes the graph of a partial
commutative monoid multiplication m(h1,h2,h) ⇐⇒ h1~h2 = h.

4Here, a “model” is a structure-preserving morphism of refinement systems:

D
�−� //

��

Rel•

��
T �−�

// Rel

40 / 46

The fibrational Day construction

More generally, if U : D →T is a mc bifibration and A is a monoid
in T , then DA is monoidal closed by:

R ⊗A S def= pushm(R ⊗S)

IA
def= pushe I

R(A S def= pullcurry(m)(R(S)

where m :A⊗A→A and e : I →A are the monoid operations.

(The Day construction on presheaves is an instance of this.)

41 / 46

Fibrational biorthogonality

Kind of similarly, if U : D →T is a mc fibration and
plug :A⊗B→C is any pairing operation in T , then every
refinement ⊥@C induces a contravariant adjunction

DA

(−)⊥
''

⊥ D
op
B

⊥(−)

gg

where the operations (−)⊥ and ⊥(−) are defined by:

R⊥ def= pulllcurry(plug) (R(⊥)
⊥S def= pullrcurry(plug) (⊥ (S)

42 / 46

Simply typed lambda calculus à la Curry (à la Scott)

STLC can be thought of as a refinement of pure lambda calculus:

STLC

��
LC

We can formalize this as a cartesian closed refinement system over
the free ccc with a reflexive object...

43 / 46

Simply typed lambda calculus à la Curry (à la Scott)

STLC

LC

[σ→ τ] [τ][σ]

@σ,τ

λσ,τ

[σ′→τ′] [τ′][σ′]
@σ′ ,τ′

λσ′ ,τ′

U UU

@

λ

44 / 46

Simply typed lambda calculus à la Curry (à la Scott)

STLC

��
LC

[σ→ τ] [τ][σ]

@σ,τ

λσ,τ

[σ′→τ′] [τ′][σ′]
@σ′ ,τ′

λσ′ ,τ′

U UU

@

λ

44 / 46

Simply typed lambda calculus à la Curry (à la Scott (à la Plotkin))

This definition only asks for the (LF-like) axioms5

[σ→ τ]=⇒
@

[σ]→ [τ]
@σ,τ [σ]→ [τ]=⇒

λ
[σ→ τ]

λσ,τ

But we might impose additional conditions on models.

For example, we might interpret simple types by a logical relation.
Abstractly, a type-indexed family Rσ@U is logical just in case

Rσ→τ ≡ pull@ (Rσ →Rτ)

OTOH, we might also consider interpretations where

Rσ→τ ≡ pushλ (Rσ →Rτ)

These Qs seem to be connected to bidirectional typing...

5...and perhaps corresponding β/η equations on derivations.
45 / 46

Conclusion

Summary:
Ï A (naive!) categorical perspective on extrinsic typing.
Ï Fibrations are fine, but we can also have fun with functors!
Ï Attentive to the logical interplay push/⊗ vs . pull/(
Ï Just a starting point for mathematical study.

Thanks for listening!

46 / 46

	Functors are type refinement systems
	Reading Grothendieck in translation
	Monoidal closed refinement systems
	Using monoidal closed bifibrations as a logical framework

