
Towards a mathematical science of programming

Noam Zeilberger

February 11, 2016

1 Overview

In many areas of science there is a tension between the desire to introduce new ideas to solve today’s
problems, and the ability to analyze these ideas using rigorous mathematical foundations. Usually this
tension gives rise to a healthy “competition” between these two aspects of science, but sometimes one side
so outweighs the other that it is difficult to make meaningful progress: good ideas get forgotten in the
absence of a rigorous framework for explaining them, while overly rigid foundations can induce blindness
to problems lying outside their formal scope. At such times, something is required in order to upset the
balance of power – either bold new ideas, or bold new mathematical foundations (though often one closely
follows the other).

For a long time, I have been convinced that the field of programming languages is at such an intel-
lectual blocking point, in need of a major revision to its mathematical foundations. Category theory, a
richly-developed branch of mathematics, has been successfully applied to explain some aspects of typed
programming languages, yet it is far from an everyday tool in reasoning about computational systems or
even in the analysis of type systems (as, say, algebra and differential equations are in the analysis of physical
systems). Instead, programming language researchers usually develop formalisms on an ad hoc basis, and
study them using techniques which remain somewhat isolated from the mainstream of mathematics, and
difficult to communicate to outsiders. I believe that this is not an accident or due to purely social factors,
but instead is a result of a fundamental mismatch between the intuitive conception of type systems and the
way that they are usually explained via category theory.

In long-running joint work with Paul-André Melliès, I have been developing a categorical foundation
for programming languages that rejects the established wisdom of interpreting a type system as a category
of well-typed terms. A starting point for understanding our work is the idea that

functors are type refinement systems.

I am convinced that this basic idea provides the right conceptual basis for thinking about types through
the lens of category theory, and indeed unifies type theory with other approaches to reasoning about
computational systems (such as Hoare logic). Developing the applications of this framework – as well as
understanding its limits – will take a serious and prolonged study.

An advantage of this approach is that it provides new ways of looking at familiar objects, and one
completely unexpected outcome of this work was the discovery of

a correspondence between normal planar lambda terms and rooted planar maps.

This is a striking new link between the field of programming languages and a very active area of combina-
torics (enumeration of graphs on surfaces), which itself has far-reaching links to domains such as algebraic
geometry and mathematical physics. Moreover, the early indications are that that this is not just a miracu-
lous coincidence, but instead a sign of a deeper connection. Since the potential for knowledge transfer in
both directions is real and quite exciting, I am eager to pursue such connections over the coming years.

1

2 Functors are type refinement systems

Type theory is a bit unusual as a mathematical theory in that the word “type” does not have a well-accepted
meaning, and is actually used informally in two very different senses, sometimes called “types à la Church”
and “types à la Curry” (or the intrinsic and the extrinsic views of typing by Reynolds [14]). One basic
contribution of my paper with Paul-André Melliès, “Functors are Type Refinement Systems” [9], was to
give a mathematical articulation of this informal distinction, and in particular to place typing “à la Curry”
solidly within the framework of categorical logic. It is important to note that the standard dogma which
interprets a typed programming language as a category of well-typed terms (see, e.g., Lambek and Scott [7])
is inherently biased towards the “types à la Church” view, indeed is formally incompatible with typing à la
Curry. This is because by definition, in a category, any morphism f is intrinsically associated with a unique
pair of types, namely its domain dom(f) and codomain cod(f). The idea alluded to in the title of our paper
is to instead interpret a type system as a functor from a category of typing derivations to a category of terms:

S
T U

A B C

V

f

α β D

t

��
T

In this picture, objects of T represent types intrinsically associated to terms (hence, “types à la Church”),
while objects ofD represent an extra layer of more refined typing information (hence, “types à la Curry”),
with the type refinement relation formally represented by the functor t. (So in the diagram above the types
S and T refine the types A and B, respectively, while U and V both refine the same type C.) A typing judgment
is defined as a triple (S, f ,T) of a morphism f in T together with a pair of objects S and T inDwhich refine
its domain and codomain, t(S) = dom(f), t(T) = cod(f). A derivation of a typing judgment (S, f ,T) is just a
morphism α : S→ T inDmapped by the functor t to the morphism f .

Now, on the one hand, many type systems can be naturally modelled this way as functors, with
different features of the type system corresponding to different properties of the corresponding functor.
For example, in [9] we showed that the property of being a Grothendieck bifibration [3] has a natural type-
theoretic interpretation, with the categorical definition unwinding into a certain collection of typing rules
for image and inverse image types. On the other hand, this idea can also serve as a working mathematical
definition of “type system”: indeed, any functor between two categories can be interpreted as a type system
in a sufficiently abstract sense. Such a definition allows one to study type systems from a much more
elementary perspective, and identify common patterns that occur across a range of computational settings
even beyond the traditional scope of type theory. For example, in [9] we explained how Hoare logic may
be considered as a type system in this sense, and used this fact to derive an analysis of the so-called “frame
rule” in separation logic. In a more recent paper [10], we developed this approach considerably further
by proving a suite of general representation theorems for type systems-as-functors (or “type refinement
systems”), and in particular an Isbell-style duality theorem which we showed how to apply, for example,
to the computation of strongest postconditions in Hoare logic. In our most recent article [11], we applied
insights derived from this work to obtain a solution to a longstanding open problem in categorical logic
originally set out by Lawvere, related to defining equality in the hyperdoctrine of presheaves.

These results are part of a longer term research project to develop practical mathematical foundations
for the study of programming languages and proof systems. One of my original, personal motivations for
beginning this line of work with Melliès over five years ago was to provide a rigorous framework in which
to explain various intuitions I had developed during my thesis work [17], which connected phenomena that
arise in the type-theoretic study of computational effects to the proof theory of linear logic. I am confident
that this type of research will continue to provide a clarifying perspective on type theory within the wider
world of mathematics and computer science, and pave the way for interesting and useful new discoveries.

2

3 A leap from λ-calculus into the theory of embedded graphs

One basic “folklore” observation in lambda calculus is that the β-normal forms can be characterized in-
ductively, as a syntactic category (R) defined in mutual recursion with an auxiliary syntactic category (B)
of “neutral” terms. This division shows up in many places in proof theory and programming languages,
for example in proofs of strong normalization [6] and in the formulation of bidirectional type checking [4].
Based on ideas of Pfenning [13], it also provides a primordial example of a refinement type signature, with the
syntactic categories R and B now seen as types refining the universal type U of pure lambda terms.

Motivated by my work with Melliès on the categorical semantics of type refinement systems (Section 2),
I decided to study this signature in the linear case where every free or bound variable is used exactly once,
since the categorical axiomatics for that situation are particularly simple and elegant. As a first step, I
thought it could be useful to count normal linear lambda terms, with the hope that this would provide a
guide towards the construction of interesting models. Using a simple recurrence formula, I obtained (in
May 2014) the initial sequence

1, 2, 9, 54, 378, 2916, 24057

counting the number of distinct underlying shapes of closed normal linear lambda terms of a given size,
where the shape of a lambda term abstracts away from its variable binding.

Quite surprisingly, this sequence was already listed in the OEIS [12] as entry A000168, and is a well-
known series in combinatorics (see, e.g., [5, VII.8.2]) counting rooted planar maps by number of edges. Planar
maps (= graphs embedded in a sphere) are a very old subject, but the idea of “rooting” a map was introduced
in the 1960s by Bill Tutte in order to simplify the problem of counting isomorphism classes of maps. Tutte
wrote two classic papers on the subject in the ’60s [15, 16] where he even gave a beautiful closed formula
for the number of rooted planar maps with n edges (2(2n)!3n

n!(n+2)!). Since then, people have counted rooted maps
on surfaces other than the sphere and with many different kinds of constraints – it’s an active subfield of
combinatorics that overlaps with numerous other areas of mathematics as well [8].

In an arXiv draft posted in August 2014 (later published in LMCS [18]), Alain Giorgetti and I gave a
size-preserving bijection to account for this numerical coincidence by showing how to replay Tutte’s 1968
analysis [16] of rooted planar maps in lambda calculus. Although the deeper meaning of this bijection is still
not completely clear, one reason it suggests tantalizing directions for research is that rooted planar maps
are naturally seen as a corner of a much larger mathematical universe. For example, there is an elegant,
purely algebraic way of representing an embedding of a graph into an oriented surface called a combinatorial
map. It is known that general linear lambda terms (considered up to α-equivalence) are in bijection with
the subclass of trivalent rooted combinatorial maps [2,20], and moreover this restricts to a bijection between
shapes of linear lambda terms and trivalent rooted planar maps, giving us the following table:

linear lambda terms rooted trivalent maps on oriented surfaces
shapes of linear lambda terms rooted trivalent maps on the sphere

shapes of β-normal linear lambda terms rooted maps on the sphere

Looking at the table, it is natural to ask about what happens when one considers β-normal linear lambda
terms in general and not just their underlying shapes. I recently made important progress towards resolving
this question, by proving [19] that if one counts certain isomorphism classes of closed normal linear lambda
terms, then the sequence one obtains is precisely the sequence (A000698) counting rooted combinatorial
maps by number of edges – and even better, the two-variable generating function L̃B(z, x) counting iso-
morphism classes of neutral linear lambda terms (by size and number of free variables) is equal to the
two-variable generating function counting isomorphism classes of rooted maps on oriented surfaces (by
number of edges and vertices) derived by Arquès and Béraud [1]. As a corollary, one can show that the
generating function L̃R(z, 0) = z + 2z2 + 10z3 + 744 + . . . counting isomorphism classes of closed normal linear
lambda terms satisfies the following remarkable continued fraction: L̃R(z, 0) = z

1− 2z
1− 3z

1−...

.

Much more can be said, but let me conclude by mentioning that it is even possible to apply the corre-
spondence between linear lambda terms and rooted trivalent maps to give a lambda calculus reformulation
of the Four Color Theorem [20]. By all indications, we are just at the outset of an exciting journey!

3

https://oeis.org/A000168
https://oeis.org/A000698

References
[1] Didier Arquès and Jean-François Béraud. Rooted maps on orientable surfaces, Riccati’s equation and continued

fractions. Discrete mathematics 215:1–12, 2000.

[2] O. Bodini, D. Gardy, and A. Jacquot. Asymptotics and random sampling for BCI and BCK lambda terms. Theoretical
Computer Science, 502:227–238, 2013.

[3] Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structures. Cambridge University Press, 1994.

[4] Joshua Dunfield and Neel Krishnaswami. Complete and Easy Bidirectional Typechecking for Higher-Rank Poly-
morphism. In Proceedings of the 18th ACM SIGPLAN Int. Conf. on Functional Programming, Boston, USA, 2013.

[5] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[6] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press, 1990.

[7] Joachim Lambek and Philip Scott. Introduction to Higher-order Categorical Logic. CUP, 1986.

[8] Sergei K. Lando and Alexander K. Zvonkin. Graphs on Surfaces and Their Applications, Encyclopaedia of Mathematical
Sciences 141, Springer-Verlag, 2004.

[9] Paul-André Melliès and Noam Zeilberger. Functors are Type Refinement Systems. In Proceedings of the 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming, Mumbai, India, 2015.

[10] Paul-André Melliès and Noam Zeilberger. An Isbell Duality Theorem for Type Refinement Systems. Submitted for
publication. July 31, 2015. arXiv:1501.05115

[11] Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction of Lawvere’s presheaf hyperdoctrine.
Submitted for publication. January 22, 2016. arXiv:1601.06098.

[12] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences. See entries A000168 and A000698.

[13] Frank Pfenning. Refinement Types for Logical Frameworks. In Informal Proceedings of the Workshop on Types for
Proofs and Programs (ed. Herman Geuvers), 285–299, Nijmegen, The Netherlands, May 1993.

[14] John C. Reynolds. Theories of Programming Languages. CUP, 1998.

[15] W. T. Tutte. A census of planar maps. Canadian Journal of Mathematics, 15:249–271, 1963.

[16] W. T. Tutte. On the enumeration of planar maps. Bulletin of the American Mathematical Society, 74:64–74, 1968.

[17] Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching, PhD thesis, Carnegie Mellon University,
Computer Science Department, April 2009.

[18] Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and normal planar lambda
terms. Logical Methods in Computer Science, 11(3:22)2015:1-39, 2015.

[19] Noam Zeilberger. Counting isomorphism classes of β-normal linear lambda terms. Submitted for publication.
September 25, 2015. arXiv:1509.07596

[20] Noam Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. Submitted for publication. December
21, 2015. arXiv:1512.06751

4

	Overview
	Functors are type refinement systems
	A leap from -calculus into the theory of embedded graphs
	References

