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Abstract
We introduce a sequent calculus with a simple restriction of Lambek’s product rules that precisely
captures the classical Tamari order, i.e., the partial order on fully-bracketed words (equivalently,
binary trees) induced by a semi-associative law (equivalently, tree rotation). We establish a
focusing property for this sequent calculus (a strengthening of cut-elimination), which yields
the following coherence theorem: every valid entailment in the Tamari order has exactly one
focused derivation. One combinatorial application of this coherence theorem is a new proof of
the Tutte–Chapoton formula for the number of intervals in the Tamari lattice Yn. Elsewhere,
we have also used the sequent calculus and the coherence theorem to build a surprising bijection
between intervals of the Tamari order and a natural fragment of lambda calculus, consisting of
the β-normal planar lambda terms with no closed proper subterms.
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1 Introduction

1.1 The Tamari order, Tamari lattices and associahedra
Suppose you are given a pair of binary trees A and B and the following problem: transform
A into B using only right rotations. Recall that a right rotation is an operation acting locally
on a pair of internal nodes of a binary tree, rearranging them like so:

−→

Solving this problem amounts to showing that A ≤ B in the Tamari order. Originally
introduced by Dov Tamari in the study of monoids with a partially-defined multiplication
operation [6, 25, 26], the Tamari order is the partial ordering on words induced by asking
that multiplication obeys a semi-associative law1

(A ∗B) ∗ C ≤ A ∗ (B ∗ C)

and is monotonic in each argument:

A ≤ A′
A ∗B ≤ A′ ∗B

B ≤ B′
A ∗B ≤ A ∗B′

For example, the word (p ∗ (q ∗ r)) ∗ s is below the word p ∗ (q ∗ (r ∗ s)) in the Tamari order:

−→ −→

1 Clearly, one has to make an arbitrary choice in orienting associativity from left-to-right or right-to-left,
and Tamari’s original papers in fact took the opposite convention. The literature is inconsistent about
this, but since the two possible orders defined are strictly dual it does not make much difference.
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33:2 A sequent calculus for a semi-associative law

Figure 1 The Tamari lattice Y3.

The variables p, q, . . . are just placeholders and what really matters is the underlying shape
of such “fully-bracketed words”, which is what justifies the above description of the Tamari
order in terms of unlabelled binary trees. Since such trees are enumerated by the ubiquitous
Catalan numbers (there are Cn =

(2n
n

)
/(n+ 1) distinct binary trees with n internal nodes)

which also count many other isomorphic families of objects, the Tamari order has many other
equivalent formulations as well, such as on strings of balanced parentheses [8], triangulations
of a polygon [20], or Dyck paths [2].

For any fixed natural number n, the Cn objects of that size form a lattice under the
Tamari order, which is called the Tamari lattice Yn. For example, Figure 1 shows the Hasse
diagram of Y3, which has the shape of a pentagon, and readers familiar with category theory
may recognize this as “Mac Lane’s pentagon”. More generally, a fascinating property of the
Tamari order is that each lattice Yn generates via its Hasse diagram the underlying graph of
an (n− 1)-dimensional polytope called an “associahedron” [17,22].

1.2 A Lambekian analysis of the Tamari order
In this paper we will introduce and study a surprisingly elementary presentation of the
Tamari order as a sequent calculus in the spirit of Lambek [10, 11]. This calculus consists of
just one left rule and one right rule:

A,B,∆ −→ C

A ∗B,∆ −→ C
∗L Γ −→ A ∆ −→ B

Γ,∆ −→ A ∗B ∗R

together with two structural rules:

A −→ A
id

Θ −→ A Γ, A,∆ −→ B

Γ,Θ,∆ −→ B
cut

Here, Γ, ∆, and Θ range over lists of formulas called contexts, and we write a comma to
indicate concatenation of contexts (which is a strictly associative operation).

In fact, all of these rules come straight from Lambek [10], except for the ∗L rule which is
a restriction of his left rule for products. Lambek’s original rule looked like this:

Γ, A,B,∆ −→ C

Γ, A ∗B,∆ −→ C ∗L
amb
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That is, Lambek’s left rule allowed the formula A ∗ B to appear anywhere in the context,
whereas our more restrictive rule ∗L requires the formula to appear at the leftmost end of
the context. It turns out that this simple variation makes all the difference for capturing the
Tamari order!

For example, here is a sequent derivation of the entailment (p ∗ (q ∗ r)) ∗ s ≤ p ∗ (q ∗ (r ∗ s))
(we write L and R as short for ∗L and ∗R, and don’t bother labelling instances of id):

p −→ p

q −→ q
r −→ r s −→ s
r, s −→ r ∗ s R

q, r, s −→ q ∗ (r ∗ s) R

q ∗ r, s −→ q ∗ (r ∗ s) L

p, q ∗ r, s −→ p ∗ (q ∗ (r ∗ s)) R

p ∗ (q ∗ r), s −→ p ∗ (q ∗ (r ∗ s)) L

(p ∗ (q ∗ r)) ∗ s −→ p ∗ (q ∗ (r ∗ s)) L

If we had full access to Lambek’s original rule then we could also derive the converse
entailment (which is false for Tamari):

p −→ p
q −→ q r −→ r
q, r −→ q ∗ r R

p, q, r −→ p ∗ (q ∗ r) R
s −→ s

p, q, r, s −→ (p ∗ (q ∗ r)) ∗ s R

p, q, r ∗ s −→ (p ∗ (q ∗ r)) ∗ s L
amb

p, q ∗ (r ∗ s) −→ (p ∗ (q ∗ r)) ∗ s L
amb

p ∗ (q ∗ (r ∗ s)) −→ (p ∗ (q ∗ r)) ∗ s L

But with the more restrictive rule we can’t – the following soundness and completeness result
will be established below.
I Claim 1. A −→ B is derivable using the rules ∗L, ∗R, id, and cut if and only if A ≤ B

holds in the Tamari order.
As Lambek emphasized, the real power of a sequent calculus comes when it is combined with
Gentzen’s cut-elimination procedure [7]. We will prove the following somewhat stronger form
of cut-elimination:
I Claim 2. If Γ −→ A is derivable using the rules ∗L, ∗R, id, and cut, then it has a derivation
using only ∗L together with the following restricted forms of ∗R and id:

Γirr −→ A ∆ −→ B

Γirr,∆ −→ A ∗B ∗Rfoc
p −→ p idatm

where Γirr ranges over contexts that don’t have a product C ∗D at their leftmost end.
This is actually a focusing completeness result in the sense of Andreoli [1], and we will refer
to derivations constructed using only the rules ∗L, ∗Rfoc, and idatm as focused derivations.
(The above derivation of (p∗ (q ∗r))∗s ≤ p∗ (q ∗ (r ∗s)) is an example of a focused derivation.)
A careful analysis of these three rules confirms that any sequent Γ −→ A has at most one
focused derivation. Combining this property with Claims 1 and 2, we therefore have
I Claim 3. Every valid entailment in the Tamari order has exactly one focused derivation.
This coherence theorem is the main contribution of the paper, and we will see that it has
several interesting applications.

FSCD 2017



33:4 A sequent calculus for a semi-associative law

1.3 The surprising combinatorics of Tamari intervals, planar maps, and
planar lambda terms

The original impetus for this work came from wanting to better understand an apparent
link between the Tamari order and lambda calculus, which was inferred indirectly via their
mutual connection to the combinatorics of embedded graphs.

About a dozen years ago, Fréderic Chapoton [3] proved the following surprising formula
for the number of intervals in the Tamari lattice Yn:

2(4n+ 1)!
(n+ 1)!(3n+ 2)! (1)

Here, by an “interval” of a partially ordered set we just mean a valid entailment A ≤ B, which
can also be identified with the corresponding set of elements [A,B] = {C | A ≤ C ≤ B } (a
poset with minimum and maximum elements). For example, the Tamari lattice Y3 displayed
in Figure 1 contains 13 intervals. Chapoton used generating function techniques to show that
(1) gives the number of intervals in Yn, and we will explain how the above coherence theorem
can be used to give a new proof of this result. As Chapoton mentions, though, the formula
itself did not come out of thin air, but rather was found by querying the On-Line Encyclopedia
of Integer Sequences (OEIS) [21]. Formula (1) is included in OEIS entry A000260, and in fact
it was derived over half a century ago by the graph theorist Bill Tutte [27] for a seemingly
unrelated family of objects: it counts the number of (3-connected, rooted) triangulations
of the sphere with 3(n+ 1) edges. The same formula is also known to count other natural
families of embedded graphs, and in particular it counts the number of bridgeless rooted
planar maps with n edges [28].2 Sparked by Chapoton’s observation, Bernardi and Bonichon
[2] found an explicit bijection between intervals of the Tamari order and 3-connected rooted
planar triangulations, and quite recently, Fang [5] has proposed new bijections between these
three different families of objects (i.e., between 3-connected rooted planar triangulations,
bridgeless rooted planar maps, and Tamari intervals).

Meanwhile, in [32], Alain Giorgetti and I gave a bijection between rooted planar maps
(possibly containing bridges) and a simple fragment of linear lambda calculus consisting of
the β-normal planar terms. As with Chapoton’s result, this connection between maps and
lambda calculus was found using hints from the OEIS, since the sequence enumerating rooted
planar maps was already known – and once again this sequence was first computed by Tutte,
who derived another simple closed formula for the number of rooted planar maps with n edges
( 2(2n)!3n

n!(n+2)! ). Now, let us say that a term is indecomposable if it has no closed proper subterms.
Although this property may be unfamiliar to some readers, indecomposability turns out to
be very natural to consider in a linear context – for example, in [30] it was used to give a
lambda calculus reformulation of the Four Color Theorem, based on a characterization of
bridgeless rooted trivalent maps as indecomposable linear lambda terms. In any case, it
is not difficult to check that the bijection described in [32] restricts to a bijection between
bridgeless rooted planar maps and indecomposable β-normal planar terms, and therefore
that formula (1) also enumerates indecomposable β-normal planar terms by size. It is then a
natural question whether there exists a direct bijection between such terms and intervals of
the Tamari order.

2 A rooted planar map is a connected graph embedded in the 2-sphere or the plane, with one half-edge
chosen as the root. A (rooted planar) triangulation (dually, trivalent map) is a (rooted planar) map
in which every face (dually, vertex) has degree three. A map is said to be bridgeless (respectively,
3-connected) if it has no edge (respectively, pair of vertices) whose removal disconnects the underlying
graph. (Cf. [12].)

https://oeis.org/A000260
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An explicit bijection between indecomposable β-normal planar terms and Tamari intervals
was given in an earlier, longer version of this paper [31], and the proof of its correctness relies
in an essential way on the sequent calculus and coherence theorem. That bijection is omitted
here in part due to space constraints, and in part because I would like to give a fuller and
more conceptual account of the combinatorics, connecting it to the duality between skew-
monoidal categories [24] and skew-closed categories [23]. However, even without this original
application, I believe that the sequent calculus considered here is of intrinsic mathematical
interest: Tamari lattices and related associahedra have been studied for over sixty years,
so the fact that such an elementary and natural proof-theoretic characterization of semi-
associativity has been seemingly overlooked is surprising. Moreover, this characterization is
clearly productive, since it leads to a much more structured proof of Chapoton’s seminal
result – an unexpected link between important ideas in proof theory (such as cut-elimination
and focusing) and an active research topic in combinatorics.

2 A sequent calculus for the Tamari order

2.1 Definitions and terminology
For reference, we recall here the definition of the sequent calculus introduced in 1.2, and
clarify some notational conventions. The four rules of the sequent calculus are:

A,B,∆ −→ C

A ∗B,∆ −→ C
∗L Γ −→ A ∆ −→ B

Γ,∆ −→ A ∗B ∗R

A −→ A
id

Θ −→ A Γ, A,∆ −→ B

Γ,Θ,∆ −→ B
cut

Uppercase Latin letters (A,B, . . . ) range over formulas, which can be either compound
(A ∗ B) or atomic (ranged over by lowercase Latin letters p, q, . . . ). Uppercase Greek
letters Γ,∆, . . . range over contexts, which are (possibly empty) lists of formulas, with
concatenation of contexts indicated by a comma. (Let us emphasize that as in Lambek’s
system [10] but in contrast to Gentzen’s original sequent calculus [7], there are no rules of
“weakening”, “contraction”, or “exchange”, so the order and the number of occurrences of a
formula within a context matters.) A sequent is a pair of a context Γ and a formula A.

Abstractly, a derivation is a tree (technically, a rooted planar tree with boundary) whose
internal nodes are labelled by the names of rules and whose edges are labelled by sequents
satisfying the constraints indicated by the given rule. The conclusion of a derivation is the
sequent labelling its outgoing root edge, while its premises are the sequents labelling any
incoming leaf edges. A derivation with no premises is said to be closed.

We write “Γ −→ A” as a notation for sequents, but also sometimes as a shorthand to
indicate that the given sequent is derivable using the above rules, in other words that there
exists a closed derivation whose conclusion is that sequent (it will always be clear which of
these two senses we mean). Sometimes we will need to give an explicit name to a derivation
with a given conclusion, in which case we place it over the sequent arrow.

As in 1.2, when constructing derivations we sometimes write L and R as shorthand for
∗L and ∗R, and usually don’t bother labelling the instances of id and cut since they are clear
from context.

Finally, define the frontier fr(A) of a formula A to be the ordered list of atoms occurring in
A (i.e., by fr(A∗B) = fr(A), fr(B) and fr(p) = p), and the frontier of a context Γ = A1, . . . , An

as the concatenation of frontiers fr(Γ) = fr(A1), . . . , fr(An). The following properties are
immediate by examination of the four sequent calculus rules.

FSCD 2017
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I Proposition 4. Suppose that Γ −→ A. Then
1. (Refinement:) fr(Γ) = fr(A).
2. (Relabelling:) σΓ −→ σA, where σ is any function sending atoms to atoms.

2.2 Completeness
We begin by establishing completeness relative to the Tamari order, which is the easier
direction.

I Theorem 5 (Completeness). If A ≤ B then A −→ B.

Proof. We must show that the relation A −→ B is reflexive and transitive, and that the
multiplication operation satisfies a semi-associative law and is monotonic in each argument.
All of these properties are straightforward:
1. Reflexivity: immediate by id.
2. Transitivity: immediate by cut.
3. Semi-associativity:

A −→ A
B −→ B C −→ C
B,C −→ B ∗ C R

A,B,C −→ A ∗ (B ∗ C) R

A ∗B,C −→ A ∗ (B ∗ C) L

(A ∗B) ∗ C −→ A ∗ (B ∗ C) L

4. Monotonicity:
A −→ A′ B −→ B
A,B −→ A′ ∗B R

A ∗B −→ A′ ∗B L

A −→ A B −→ B′

A,B −→ A ∗B′ R

A ∗B −→ A ∗B′ L

J

2.3 Soundness
To prove soundness relative to the Tamari order, first we have to explain the interpretation
of general sequents. The basic idea is that we can interpret a non-empty context as a
left-associated product. Thus, a general sequent of the form

A1, A2, . . . , An −→ B

(where n ≥ 1) is interpreted as an entailment of the form

(· · · (A1 ∗A2) ∗ · · · ) ∗An ≤ B

in the Tamari order. Visualizing everything in terms of binary trees, the sequent can be
interpreted like so:

A1 A2

A

An

. . .
−→ B

That is, the context provides information about the left-branching spine of the tree which is
below in the Tamari order.
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Let φ[−] be the operation taking any non-empty context Γ to a formula φ[Γ] by the above
interpretation. The operation is defined by the following equations:

φ[A] = A φ[Γ, A] = φ[Γ] ∗A

Critical to soundness of the sequent calculus is the following “colax” property of φ[−]:
I Proposition 6. φ[Γ,∆] ≤ φ[Γ] ∗ φ[∆] for all non-empty contexts Γ and ∆.

Proof. By induction on ∆. The case of a singleton context ∆ = A is immediate. Otherwise,
if ∆ = (∆′, A), we have

φ[Γ,∆′, A] = φ[Γ,∆′] ∗A ≤ (φ[Γ] ∗ φ[∆′]) ∗A ≤ φ[Γ] ∗ (φ[∆′] ∗A) = φ[Γ] ∗ φ[∆′, A]

where the first inequality is by the inductive hypothesis and monotonicity, while the second
inequality is by the semi-associative law. J

The operation φ[−] can also be equivalently described in terms of a right action A~ ∆ of an
arbitrary context on a formula, where this action is defined by the following equations:

A~ · = A A~ (∆, B) = (A~ ∆) ∗B

We will make use of a few simple properties of −~ ∆:
I Proposition 7. φ[Γ,∆] = φ[Γ] ~ ∆ for all non-empty contexts Γ and arbitrary contexts ∆.
I Proposition 8 (Monotonicity). If A ≤ A′ then A~ ∆ ≤ A′ ~ ∆.

Proof. Both properties are immediate by induction on ∆, where in the case of Prop. 8 we
apply monotonicity of the operations − ∗B. J

We are now ready to prove soundness.

I Theorem 9 (Soundness). If Γ −→ A then φ[Γ] ≤ A.

Proof. By induction on the (closed) derivation of Γ −→ A. There are four cases, correspond-
ing to the four rules of the sequent calculus:

(Case ∗L): The derivation ends in

A,B,∆ −→ C

A ∗B,∆ −→ C
∗L

By induction we have φ[A,B,∆] ≤ C, but by Prop. 7 we have φ[A∗B,∆] = φ[A ∗B]~∆ =
(A ∗B) ~ ∆ = φ[A,B] ~ ∆ = φ[A,B,∆].
(Case ∗R): The derivation ends in

Γ −→ A ∆ −→ B
Γ,∆ −→ A ∗B ∗R

By induction we have φ[Γ] ≤ A and φ[∆] ≤ B, hence φ[Γ,∆] ≤ φ[Γ] ∗φ[∆] ≤ A ∗B where
we apply Prop. 6 for the first inequality, and monotonicity for the second.
(Case id): Immediate by reflexivity.
(Case cut): The derivation ends in

Θ −→ A Γ, A,∆ −→ B

Γ,Θ,∆ −→ B
cut

Then φ[Γ,Θ,∆] = φ[Γ,Θ] ~ ∆ ≤ (φ[Γ] ∗ φ[Θ]) ~ ∆ ≤ (φ[Γ] ∗A) ~ ∆ = φ[Γ, A,∆] ≤ B.
J
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2.4 Focusing completeness
Cut-elimination theorems are a staple of proof theory, and often provide a rich source of
information about a given logic. In this section we will prove a focusing completeness theorem,
which is an even stronger form of cut-elimination originally formulated by Andreoli in the
setting of linear logic [1].

I Definition 10. A context Γ is said to be reducible if its leftmost formula is compound,
and irreducible otherwise. A sequent Γ −→ A is said to be:

left-inverting if Γ is reducible;
right-focusing if Γ is irreducible and A is compound;
atomic if Γ is irreducible and A is atomic.

I Proposition 11. Any sequent is either left-inverting, right-focusing, or atomic.

I Definition 12. A closed derivation D is said to be focused if left-inverting sequents only
appear as the conclusions of ∗L, right-focusing sequents only as the conclusions of ∗R, and
atomic sequents only as the conclusions of id.
We write “Γirr” to indicate that a context Γ is irreducible.

I Proposition 13. A closed derivation is focused if and only if it is constructed using only ∗L
and the following restricted forms of ∗R and id (and no instances of cut):

Γirr −→ A ∆ −→ B

Γirr,∆ −→ A ∗B ∗Rfoc
p −→ p idatm

I Example 14. One way to derive ((p ∗ q) ∗ r) ∗ s −→ p ∗ ((q ∗ r) ∗ s) is by cutting together
the two derivations

SAp,q,r

(p ∗ q) ∗ r −→ p ∗ (q ∗ r) s −→ s

(p ∗ q) ∗ r, s −→ (p ∗ (q ∗ r)) ∗ s R

((p ∗ q) ∗ r) ∗ s −→ (p ∗ (q ∗ r)) ∗ s L
and SAp,q∗r,s

(p ∗ (q ∗ r)) ∗ s −→ p ∗ ((q ∗ r) ∗ s)

where SAA,B,C is the derivation of the semi-associative law (A ∗B) ∗C −→ A ∗ (B ∗C) from
the proof of Theorem 5. Clearly this is not a focused derivation (besides the cut rule, it also
uses instances of ∗R and id with a left-inverting conclusion). However, it is possible to give
a focused derivation of the same sequent:

p −→ p

q −→ q r −→ r
q, r −→ q ∗ r R s −→ s

q, r, s −→ (q ∗ r) ∗ s R

p, q, r, s −→ p ∗ ((q ∗ r) ∗ s) R

p ∗ q, r, s −→ p ∗ ((q ∗ r) ∗ s) L

(p ∗ q) ∗ r, s −→ p ∗ ((q ∗ r) ∗ s) L

((p ∗ q) ∗ r) ∗ s −→ p ∗ ((q ∗ r) ∗ s) L

In the below, we write “Γ =⇒ A” as a shorthand notation to indicate that Γ −→ A has a
(closed) focused derivation, and “D : A =⇒ B” to indicate that D is a particular focused
derivation of A −→ B.

I Theorem 15 (Focusing completeness). If Γ −→ A then Γ =⇒ A.
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To prove the focusing completeness theorem, it suffices to show that the cut rule as well
as the unrestricted forms of id and ∗R are all admissible for focused derivations, in the
proof-theoretic sense that given focused derivations of their premises, we can obtain a focused
derivation of their conclusion. We begin by proving a focused deduction lemma (cf. [19]),
which entails the admissibility of id, then show cut and ∗R in turn.

I Lemma 16 (Deduction). If Γirr =⇒ A implies Γirr,∆ =⇒ B for all Γirr, then A,∆ =⇒ B.
In particular, A =⇒ A.

Proof. By induction on the formula A:
(Case A = p): Immediate by assumption, taking Γirr = p and p =⇒ p derived by idatm.
(Case A = A1 ∗A2): By composing with the ∗L rule,

A1, A1,∆ −→ B

A1 ∗A2,∆ −→ B
∗L

we reduce the problem to showing A1, A2,∆ =⇒ B, and by the i.h. on A1 it suffices to
show that Γirr

1 =⇒ A1 implies Γirr
1 , A2,∆ =⇒ B for all contexts Γirr

1 . Let D1 : Γirr
1 =⇒ A1.

We can derive Γirr
1 , A2 =⇒ A1 ∗A2 by

D =

D1
Γirr

1 −→ A1
D2

A2 −→ A2

Γirr
1 , A2 −→ A1 ∗A2

∗R

where we apply the i.h. on A2 to obtain D2. Finally, applying the assumption to D (with
Γirr = Γirr

1 , A2) we obtain the desired derivation of Γirr
1 , A2,∆ =⇒ B.

J

I Lemma 17 (Cut). If Θ =⇒ A and Γ, A,∆ =⇒ B then Γ,Θ,∆ =⇒ B.

Proof. Let D : Θ =⇒ A and E : Γ, A,∆ =⇒ B. We proceed by a lexicographic induction,
first on the cut formula A and then on the pair of derivations (D, E) (i.e., at each inductive
step of the proof, either A gets smaller, or it stays the same as one of D or E gets smaller
while the other stays the same).

In the case that A = p we can apply the “frontier refinement” property (Prop. 4) to
deduce that Θ = p, so the cut is trivial and we just reuse the derivation E : Γ, p,∆ =⇒ B.
Otherwise we have A = A1 ∗A2 for some A1, A2, and we proceed by case-analyzing the root
rule of E :

(Case idatm): Impossible since A is non-atomic.
(Case ∗Rfoc): This case splits in two possibilities:
1. ∃∆1,∆2 such that ∆ = ∆1,∆2 and

E =

E1
Γirr, A,∆1 −→ B1

E2
∆2 −→ B2

Γirr, A,∆1,∆2 −→ B1 ∗B2
∗R

2. ∃Γirr
1 ,Γ2 such that Γirr = Γirr

1 ,Γ2 and

E =

E1
Γirr

1 −→ B1

E2
Γ2, A,∆ −→ B2

Γirr
1 ,Γ2, A,∆ −→ B1 ∗B2

∗R

FSCD 2017



33:10 A sequent calculus for a semi-associative law

In the first case, we cut D with E1 to obtain Γirr,Θ,∆1 =⇒ B1, then recombine that with
E2 using ∗Rfoc to obtain Γirr,Θ,∆1,∆2 =⇒ B1 ∗B2. The second case is similar.
(Case ∗L): This case splits into two possibilities:
1. ∃C1, C2,Γ′ such that Γ = C1 ∗ C2,Γ′ and

E =

E ′
C1, C2,Γ′, A,∆ −→ B

C1 ∗ C2,Γ′, A,∆ −→ B
∗L

We cut D into E ′ and reapply the ∗L rule.
2. Γ = · and

E =

E ′
A1, A2,∆ −→ B

A1 ∗A2,∆ −→ B
∗L

We further analyze the root rule of D:
(Case ∗L): ∃C1, C2,Θ′ s.t. Θ = C1 ∗ C2,Θ′ and

D =

D′
C1, C2,Θ′ −→ A1 ∗A2

C1 ∗ C2,Θ′ −→ A1 ∗A2
∗L

We cut D′ into E and reapply the ∗L rule.
(Case idatm): Impossible.
(Case ∗Rfoc): ∃Θirr

1 ,Θ2 s.t. Θirr = Θirr
1 ,Θ2 and

D =

D1
Θirr

1 −→ A1
D2

Θ2 −→ A2

Θirr
1 ,Θ2 −→ A1 ∗A2

∗R

We cut both D1 and D2 into E ′ (the cuts are at smaller formulas so the order doesn’t
matter).

J

I Lemma 18 (∗R admiss.). If Γ =⇒ A and ∆ =⇒ B then Γ,∆ =⇒ A ∗B.

Proof. Let D : Γ =⇒ A and E : ∆ =⇒ B. We proceed by induction on D. If Γ is irreducible
then we directly apply ∗Rfoc. Otherwise, D must be of the form

D =

D′
C1, C2,Γ′ −→ A

C1 ∗ C2,Γ′ −→ A
∗L

so we apply the i.h. to D′ with E , and reapply the ∗L rule. J

Proof of Theorem 15. An arbitrary closed derivation can be turned into a focused one by
starting at the top of the derivation tree and using the above lemmas to interpret any instance
of the cut rule and of the unrestricted forms of id and ∗R. J

Finally, we mention two simple applications of the focusing completeness theorem.

I Proposition 19 (Frontier invariance). Let σ be any function sending atoms to atoms. Then
Γ −→ A if and only if fr(Γ) = fr(A) and σΓ −→ σA.
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Proof. The forward direction is Prop. 4. For the backward direction we use induction on
focused derivations, which is justified by Theorem 15. The only interesting case is ∗Rfoc,
where we can assume fr(Γ,∆) = fr(A ∗B) and σΓ =⇒ σA (σΓ irreducible) and σ∆ =⇒ σB.
By Prop. 4 we have fr(σΓ) = fr(σA) and fr(σ∆) = fr(σB), but then elementary properties of
lists imply that fr(Γ) = fr(A) and fr(∆) = fr(A), from which Γ =⇒ A (Γ irreducible) and
∆ =⇒ B follow by the induction hypothesis, hence Γ,∆ =⇒ A ∗B. J

If we let σ = _ 7→ p be any constant relabelling function, then speaking in terms of the
Tamari order, Proposition 19 says that to check that two “fully-bracketed words” (a.k.a.,
formulas) are related, it suffices to check that their frontiers are equal and that the unlabelled
binary trees describing their underlying multiplicative structure are related. Although this
fact is intuitively obvious, trying to prove it directly by induction on general derivations fails,
because in the case of the cut rule we cannot assume anything about the frontier of the cut
formula A.

I Definition 20. We say that an irreducible context Γirr is a maximal decomposition of
A if Γirr −→ A, and for any other Θirr, Θirr −→ A implies Θirr −→ φ[Γirr].

I Proposition 21. If Γirr is a maximal decomposition of A, then A,∆ −→ B if and only if
Γirr,∆ −→ B.

Proof. The forward direction is by cutting with Γirr −→ A, the backwards direction is by
the deduction lemma (16) and the universal property of Γirr. J

I Proposition 22. Let ψ[A] be the irreducible context defined inductively by:

ψ[p] = p ψ[A ∗B] = ψ[A], B

Then ψ[A] is a maximal decomposition of A.

Proof. We construct ψ[A] −→ A by induction on A, and prove the universal property of
ψ[A] by induction on focused derivations of Θirr −→ A. J

I Proposition 23. φ[ψ[A]] = A and ψ[φ[Θirr]] = Θirr.
The maximal decomposition ψ[A] of A is essentially the same thing as what Chapoton [3]
calls a “décomposition maximale” of a binary tree. The logical characterization expressed in
Defn. 20 is quite general, though, and is familiar from studies of focusing in other settings
(cf. [29]).

2.5 The coherence theorem
We now come to our main result:

I Theorem 24 (Coherence). Every derivable sequent has exactly one focused derivation.

Coherence is a direct consequence of focusing completeness and the following lemma:

I Lemma 25. For any context Γ and formula A, there is at most one focused derivation of
Γ −→ A.

Proof. We proceed by a well-founded induction on sequents, which can be reduced to multiset
induction as follows. Define the size |A| of a formula A by |A ∗ B| = 1 + |A| + |B| and
|p| = 0. (That is, |A| counts the number of multiplication operations occurring in A.) Then
any sequent A1, . . . , An −→ B induces a multiset of sizes (

⊎n
i=1 |Ai|) ] |B|, and at each step

of our induction this multiset will decrease in the multiset ordering.
There are three cases:
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(A left-inverting sequent A ∗B,∆ −→ C): Any focused derivation must end in ∗L, so we
apply the i.h. to A,B,∆ −→ C.
(A right-focusing sequent Γirr −→ A ∗B): Any focused derivation must end in ∗R, and
decide some splitting of the context into contiguous pieces Γirr

1 and ∆2. However, Γirr
1 and

∆2 are uniquely determined by frontier refinement (fr(Γirr
1 ) = fr(A) and fr(∆2) = fr(B))

and the equation Γirr = Γirr
1 ,∆2. So, we apply the i.h. to Γirr

1 −→ A and ∆2 −→ B.
(An atomic sequent Γirr −→ p): The sequent has exactly one focused derivation if and
only if Γirr = p.

J

Proof of Theorem 24. By Theorem 15 and Lemma 25. J

2.6 Notes
The coherence theorem says in a sense that focused derivations provide a canonical represen-
tation for intervals of the Tamari order. Although the representations are quite different,
in this respect it seems roughly comparable to the “unicity of maximal chains” that was
established by Tamari and Friedman as part of their original proof of the lattice property
of Yn [6, 26]. A natural question is whether the sequent calculus can be used to better
understand and further simplify the proofs (cf. [8] [15, §4]) of this lattice property.

An easy observation is that one obtains the dual Tamari order (cf. Footnote 1) via a
dual restriction of Lambek’s original rule, in other words by requiring the product formula
to appear at the rightmost end of the context. These two forms of product might also be
considered in combination with left and right units, or in combination with Lambek’s left
and right division operations.3 Interestingly, Lambek, who originally presented his “syntactic
calculus” as a tool for mathematical linguistics, also introduced a fully non-associative
version [11] (cf. [16, Ch. 4]); one may wonder whether there are any linguistic motivations
for semi-associativity, as an intermediate point between these two extremes.

The name “coherence theorem” for Theorem 24 is inspired by the terminology from
category theory and Mac Lane’s coherence theorem for monoidal categories [13]. Laplaza
[14] extended Mac Lane’s coherence theorem to the situation (very close to Tamari’s) where
there is no monoidal unit and the associator αA,B,C : (A⊗B)⊗C → A⊗ (B ⊗C) is only a
natural transformation rather than an isomorphism. (In the presence of units, this gives rise
to the notion of a skew-monoidal category [9, 24], cf. [23].) The precise relationship with our
proof-theoretic coherence theorem remains to be clarified.

3 Counting intervals in Tamari lattices

In this section we explain how the coherence theorem can be used to give a new proof of
Chapoton’s result (mentioned in the Introduction) that the number of intervals in Yn is
given by Tutte’s formula (1) for planar triangulations. We will assume some basic familiarity
with generating functions.

The problem of “counting intervals” is to compute the cardinality of the set In =
{ (A,B) ∈ Yn × Yn | A ≤ B } as a function of n. By the soundness and completeness theorems

3 Since circulating an earlier version of this paper [31], I have learned that Jason Reed briefly considered
precisely such an extension of the sequent calculus studied here (independently, of course), with left
unit and right division [18]. Reed did not remark the connection with the Tamari order, but rather was
interested in the apparent failure of the induced logic to satisfy Nuel Belnap’s display property.
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as well as the frontier invariance property (Prop. 19), each Yn is isomorphic as a partial
order to the set of formulas A of size n with any fixed frontier of length n+ 1 (remember
that a binary tree with n internal nodes has n+ 1 leaves), ordered by sequent derivability.
By the coherence theorem, the problem of counting intervals can therefore be reduced to the
problem of counting focused derivations.

This problem lends itself readily to being solved using generating functions. Con-
sider the generating functions L(z, x) and R(z, x) defined as formal power series L(z, x) =∑

k,n∈N `k,nx
kzn andR(z, x) =

∑
k,n∈N rk,nx

kzn, where `k,n (respectively, rk,n) is the number
of focused derivations of sequents whose left-hand side is a context (respectively, irreducible
context) of length k and whose right-hand side is a formula of size n. (Without loss of
generality in this analysis, we assume that all formulas A of size n have a fixed frontier
fr(A) = pn+1.) We write L1(z) to denote the coefficient of x1 in L(z, x).

I Proposition 26. L1(z) is the ordinary generating function counting Tamari intervals by
size.

Proof. The coefficients `1,n give the number of focused derivations of sequents of the form
A =⇒ B, where |B| = n (and hence |A| = n), so `1,n = |In| by Theorem 24. J

I Proposition 27. L and R satisfy the equations:

L(z, x) = L(z, x)− xL1(z)
x

+R(z, x) (2)

R(z, x) = zR(z, x)L(z, x) + x (3)

Proof. The equations are derived directly from the inductive structure of focused derivations:
The first summand in (2) corresponds to the contribution from the ∗L rule, which
transforms any A,B,Γ =⇒ C into A ∗ B,Γ =⇒ C. The context in the premise must
have length ≥ 2 which is why we subtract the xL1(z) factor, and the context in the
conclusion is one formula shorter which is why we divide by x. The second summand is
the contribution from irreducible contexts.
The first summand in (3) corresponds to the contribution from the ∗Rfoc rule, which
transforms Γirr =⇒ A and ∆ =⇒ B into Γirr,∆ =⇒ A ∗B: the length of the context in
the conclusion is the sum of the lengths of Γirr and ∆, while the size of A ∗B is one plus
the sum of the sizes of A and B, which is why we multiply R and L together and then by
an extra factor of z. The second summand is the contribution from idatm : p =⇒ p.

J

I Proposition 28. L1(z) = R(z, 1).

Proof. This follows algebraically from (2), but we can interpret it constructively as well.
The coefficient of zn in R(z, 1) is the formal sum

∑
k rk,n, giving the number of focused

derivations of sequents whose right-hand side is a formula of size n and whose left-hand side
is an irreducible context of arbitrary length. But by Props. 21–23, the operations φ[−] and
ψ[−] realize a 1-to-1 correspondence between derivable sequents of the form Γirr −→ B and
ones of the form A −→ B. J

After substituting L1(z) = R(z, 1) into (2) and applying a bit of algebra, we obtain another
formula for L in terms of a “discrete difference operator” acting on R:

L(z, x) = x
R(z, x)−R(z, 1)

x− 1 (4)
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The recursive (or “functional”) equations (3) and (4) can be easily unrolled using computer
algebra software to compute the first few dozen coefficients of R and L:

R(z,x)=x+x2z+(x2+2x3)z2+(3x2+5x3+5x4)z3+(13x2+20x3+21x4+14x5)z4+...

L1(z)=R(z,1)=1+z+3z2+13z3+68z4+399z5+2530z6+16965z7+...

I Theorem 29 (Chapoton [3]). |In| = 2(4n+1)!
(n+1)!(3n+2)! .

Proof. At this point, we can directly appeal to results of Cori and Schaeffer, because equations
(3) and (4) are a special case of the functional equations given in [4] for the generating
functions of description trees of type (a, b), where a = b = 1. Cori and Schaeffer explained
how to solve these equations abstractly for R(z, 1) using Brown and Tutte’s “quadratic
method”, and then how to derive the explicit formula above in the specific case that a = b = 1
via Lagrange inversion (essentially as the formula was originally derived by Tutte for planar
triangulations). J

Let’s take a moment to discuss Chapoton’s original proof of Theorem 29, which it should be
emphasized has many commonalities with the one given here, despite being less structured.
Chapoton likewise defines a two-variable generating function Φ(z, x) enumerating intervals
in the Tamari lattices Yn, where the parameter z keeps track of n, and the parameter x
keeps track of the number of segments along the left border of the tree at the lower end of
the interval.4 By a combinatorial analysis, Chapoton derives the following equation for Φ:

Φ(z, x) = x2z(1 + Φ(z, x)/x)
(

1 + Φ(z, x)− Φ(z, 1)
x− 1

)
(5)

He manipulates this equation and eventually solves for Φ(z, 1) as the root of a certain
polynomial, from which he derives Tutte’s formula (1), again by appeal to another result in
the paper by Cori and Schaeffer [4].

If we give a bit of thought to these definitions, it is easy to see that the number of
segments along the left border of a tree (= formula) A is equal to the length of its maximal
decomposition ψ[A] – meaning that the generating function Φ(z, x) apparently contains
exactly the same information as R(z, x)! There is a small technicality, however, due to
the fact that Chapoton only considers the Yn for n ≥ 1. In fact, the two generating
functions are related by a small offset (corresponding to the coefficient of z0 in R(z, x)):
Φ(z, x) = R(z, x)− x. Indeed, it can be readily verified that equation (5) follows from (3)
and (4), applying the substitution R(z, x) = x+ Φ(z, x).
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