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Abstract
One lesson learned painfully over the past twenty years is the
perilous interaction of Curry-style typing with evaluation order
and side-effects. This led eventually to the value restriction on
polymorphism in ML, as well as, more recently, to similar artifacts
in type systems for ML with intersection and union refinement
types. For example, some of the traditional subtyping laws for
unions and intersections are unsound in the presence of effects,
while union-elimination requires an evaluation context restriction
in addition to the value restriction on intersection-introduction.

Our aim is to show that rather than being ad hoc artifacts, phe-
nomena such as the value and evaluation context restrictions arise
naturally in type systems for effectful languages, out of principles
of duality. Beginning with a review of recent work on the Curry-
Howard interpretation of focusing proofs as pattern-matching pro-
grams, we explain how to interpret intersection and union refine-
ments on these programs, and how to logically derive the subtyp-
ing relationship via an identity coercion interpretation. The value
restriction, etc., emerge out of this analysis. However, this abstract
account does not immediately yield a decidable type system, essen-
tially because the syntax is infinitary—both “infinitely wide” and
“infinitely deep”. We show how to mechanically construct a fini-
tary syntax by applying two well-known PL techniques—pattern-
compilation and defunctionalization—and conclude by giving this
finitary syntax an algorithmic refinement type system. Parallel to
the text, we describe an embedding in the dependently-typed func-
tional language Agda, both for the sake of clarifying these ideas,
and also because formalization was an important guide in develop-
ing them. As one example, the Agda encoding split very naturally
into an intrinsic (“Church”) view of well-typed programs, and an
extrinsic (“Curry”) view of refinement typing for those programs.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (functional) languages; F.4.1 [Mathematical
Logic and Formal Languages]: Proof theory

General Terms Languages

1. Introduction
In the 1972 paper “Definitional Interpreters for Higher-Order Pro-
gramming Languages”, John Reynolds wrote:

Purely applicative languages are often said to be based on
a logical system called the lambda calculus, or even to
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be “syntactically sugared” versions of the lambda calcu-
lus. . . However, as we will see, although an unsugared ap-
plicative language is syntactically equivalent to the lambda
calculus, there is a subtle semantic difference. Essentially,
the “real” lambda calculus implies a different “order of ap-
plication” (i.e., normal-order evaluation) than most applica-
tive programming languages.

This “subtle semantic difference” has turned out to be a real source
of pain for the descendants of lambda calculus. A well-known prod-
uct of this pain is the so-called value restriction in ML. Before the
value restriction was adopted, various implementations of ML were
unsound due to the interaction of polymorphism with side-effects.
For example, in early compilers, the following clearly senseless
program passed the typechecker, with the variable x given poly-
morphic type (’a list) ref:

let val x = ref []
in (x := ["hello world!\n"]; hd (!x) + 2)
end

This was thought to be an issue peculiar to mutable references,
and various patches to typechecking were proposed. However the
problem was more pervasive, as Harper and Lillibridge (1991)
exhibited in 1991 with another unsound but (at the time) well-typed
program, using SML/NJ’s callcc feature. The value restriction,
proposed by Wright (1995), ruled out such programs by limiting
polymorphic generalization to syntactic values (e.g., the expression
ref [] above is not a value, because at run-time it evaluates to a fresh
location storing the empty list).

Nor is the issue peculiar to polymorphism: in general, it arises
in type systems that begin to capture more precise semantic prop-
erties of programs, and in particular in refinement type systems
(Freeman and Pfenning 1991). For example, using counterexam-
ples similar to the above, Davies and Pfenning (2000) noticed
that a value restriction is also needed for intersection types in
effectful call-by-value languages, and moreover that some stan-
dard distributivity laws of subtyping (Barendregt et al. 1983)
[(A→ B) ∩ (A→ C) ≤ A→ (B ∩ C) and > ≤ A→ >] are
unsound in that setting. More surprisingly, it turns out that a dual,
evaluation context restriction is also necessary for eliminating
(untagged) union types. In an effect-free setting, Barbanera et al.
(1995) had studied union types with the following elimination rule:

Γ ` e : A ∪B Γ, x : A ` e′ : C Γ, x : B ` e′ : C

Γ ` e′[e/x] : C

The rule allows eliminating arbitrarily many occurrences of an ex-
pression e of union type, by discriminating the union. But Dunfield
and Pfenning (2004) found this was unsound in the presence of ef-
fects, since the different occurrences of e could evaluate to a value
of type A or B nondeterministically. Therefore they proposed the
unusual “tridirectional” rule, schematized by evaluation contexts
E[]:



Γ ` e : A ∪B Γ, x : A ` E[x] : C Γ, x : B ` E[x] : C

Γ ` E[e] : C

This rule only allows eliminating a single occurrence of e, in eval-
uation position. Although Dunfield and Pfenning did not mention
it explicitly, the reasons for the evaluation context restriction also
imply that standard laws [(A→ C) ∩ (B → C) ≤ (A ∪B)→ C
and > ≤ ⊥ → C] are unsound for call-by-name functions in the
presence of effects (the latter even when the only effect is non-
termination).

All of these restrictions were discovered by “disillusionment”,
so to speak, in the sense that the messy world of side-effects pro-
vided counterexamples to simple but naive rules. Yet, bitter ex-
perience is only a poor substitute for theoretical foundations, and
understandably we may get the feeling that policies such as the
value and evaluation context restrictions amount to ad hoc monster-
barring.1 The central aim of this paper is to explain why phenom-
ena such as the value and evaluation context restrictions, as well
as evaluation-order-dependent subtyping laws, need not be policies
imposed after-the-fact, but instead can arise synthetically from a
logical view of refinement typing—our goal is not only to better
understand existing choices, but to develop a theoretical framework
that narrows the design space for future, more expressive type sys-
tems for effectful programming languages.

The starting point for our explanation is the rich account of log-
ical duality provided by focusing proofs (Andreoli 1992; Girard
2001), and its connection to computational duality—in the sense
of Filinski (1989), Curien and Herbelin (2000), Selinger (2001),
and others—via the Curry-Howard correspondence. I described this
connection in recent work (Zeilberger 2008a,b). The first half of
this paper (§2 and §3) gives a simple recipe for intersection and
union refinement types on focusing proofs-as-programs, and ex-
plains how this suffices for obtaining a rational reconstruction of
all of the above phenomena. The value restriction emerges as a de-
fault, and the question becomes when a rule for typing non-values
is logically derivable. Rather than introducing a separate set of rules
for subtyping (and having to prove them sound), we reduce subtyp-
ing to typing via an identity coercion interpretation (§3.4). In order
to identify and address the issue of unsafe subtyping laws, the iden-
tity coercion interpretation is also related to a no-counterexamples
interpretation (§3.6, although our results here are only partial). Key
to the overall simplicity of our explanation of refinement typing is
that the Curry-Howard interpretation of focusing provides “pattern-
matching for free” using a potentially infinitary, higher-order syn-
tax. However, as we will see, this abstract account has the drawback
that, in the general case, refinement checking is undecidable.

Essentially, the problem is that the syntax admits both “in-
finitely wide” and “infinitely deep” terms. To resolve these two
issues, we borrow two well-known programming languages tech-
niques: pattern-compilation and defunctionalization. The latter part
of the paper (§4 and §5) explains how to systematically construct
a finitary syntax by applying these transformations, and then how
to provide this syntax with an algorithmic refinement checking sys-
tem. Undecidability is avoided by placing annotations on cuts.

Both the infinitary and finitary systems have been formally
represented in the dependently-typed language Agda (Norell 2007),
and we describe pieces of this encoding in parallel to the text—not
only for the sake of clarifying these concepts, but also for the sake
of methodological transparency, since formalization was a helpful
constraint in developing these ideas. As one example, the Agda
encoding split very naturally into an intrinsic (“Church”) view of
well-typed programs, and an extrinsic (“Curry”) view of refinement

1 Thanks to Neel Krishnaswami for pointing me to this wonderful verb in
Lakatos’ Proofs and Refutations.

typing for those programs—a conceptual division recently argued
for by Pfenning (2008), and earlier pondered by Reynolds (2000).

2. Background: focusing proofs-as-programs
In this section we review the Curry-Howard interpretation of focus-
ing proofs, detailed in (Zeilberger 2008a,b).

2.1 A quick summary
Underlying focusing are two related forms of logical duality: be-
tween proof and refutation, and between positive and negative po-
larity. Intuitively, if the truth or falsehood of a proposition A is
thought of as the result of a game between Prover and Refuter, then
the polarity of A tells us who has the first move. Formally, focus-
ing distinguishes between two canonical modes of inference: focus
and inversion. Focus corresponds to giving direct evidence for an
inference (that A is true or false), while inversion corresponds to
matching against all possible forms of direct evidence, and deriv-
ing a contradiction.

These “forms of direct evidence” can be axiomatized as proof
patterns p and refutation patterns q. The focusing discipline can
then be summarized in a square:

Proof Refutation
Positive ∃p ∀p
Negative ∀q ∃q

We read this as follows: 1. For positive A, a proof of A may
choose any particular proof pattern (and fill in any holes), while a
refutation ofAmust consider all possible proof patterns (and derive
a contradiction from each); 2. Dually, for negative A, a refutation
of A chooses a particular refutation pattern (filling in any holes),
while a proof considers all possible refutation patterns (deriving
contradiction from each). The power of focusing is that the rules for
building proofs and refutations can be thus stated generally, with
the definition of particular logical connectives entirely contained
within the rules for forming proof/refutation patterns.

Computationally, a proof pattern corresponds to what we ordi-
narily think of as “pattern” in functional programming, i.e., a tree
of constructors (with variables at the leaves). A refutation pattern
corresponds to a less familiar notion: a tree of destructors. Actual
proofs and refutations correspond to values and continuations. The
polarity of a type tells us whether it is strict (positive) or lazy (nega-
tive), and how to analyze the values and continuations of that type:
1. A value of positive type is a pattern (of constructors) together
with a substitution filling in the pattern’s variables, while a strict
continuation is a map from patterns to expressions; 2. A contin-
uation of negative type is a pattern of destructors together with
a substitution, while a lazy value is a map from destructor pat-
terns to expressions. Since focusing proofs define a sequent calcu-
lus, cut-elimination unambiguously defines the operational seman-
tics of programs. In fact, the focusing discipline naturally enforces
continuation-passing-style, and we can see the polarity of a type as
corresponding to the choice of call-by-value or call-by-name CPS
translations.

Since most things we want to know about the negative row
of the square we can learn by mechanically dualizing the corre-
sponding statement about the positive row, we will limit attention
to positive polarity in this paper. The reader can consult Zeilberger
(2008a) for a more detailed explanation of negative (and mixed pos-
itive/negative) polarity.

2.2 Connectives and patterns
Definition 1 (Contexts and variables). A context ∆ is a multiset of
hypotheses of the form “A false”, whereA is positive. A particular
hypothesis A false ∈ ∆ is called a continuation variable κ.



Positive connectives are defined by the judgment ∆  A true,
which asserts, intuitively, that a proof of A is directly obtainable
from premises ∆, using them linearly. For example, we define
negation, strict products and sums as follows:

A false  ¬vA true ·  1 true
∆1  A true ∆2  B true

∆1,∆2  A⊗B true

(no rule for 0)
∆  A true

∆  A⊕B true
∆  B true

∆  A⊕B true

Note that we are adopting linear logic convention in writing ⊗ and
⊕ for positive conjunction and disjunction, and are writing “v”
over the negation symbol to reflect the fact that it is a call-by-value
negation.

Definition 2 (Patterns). A derivation p :: (∆  A true) is called a
pattern, or more specifically, an A-pattern.

Patterns correspond to patterns in the usual functional program-
ming sense, with the proviso that they go “as deep as possible”,
i.e., up to continuation variables.2 To make this more apparent, we
can annotate the above rules like so:

_ :: (A false  ¬vA true)

() :: (·  1 true)

p1 :: (∆1  A true) p2 :: (∆2  B true)

(p1, p2) :: (∆1,∆2  A⊗B true)

p :: (∆  A true)

inl p :: (∆  A⊕B true)

p :: (∆  B true)

inr p :: (∆  A⊕B true)

Additional connectives can be included in a modular way by adding
their pattern-formation rules, and we will do so in §2.5.

Strictly speaking, in this paper we take a de Bruijn view of vari-
ables and patterns. However, we will sometimes find it evocative
to think of variables as living in/bound by patterns, replacing the
placeholder _ with a concrete κ. The formal meaning of this nota-
tion should always be clear from context.

2.3 Values, continuations, substitutions, expressions
Suppose we have defined some positive connectives and their pat-
terns. Now we can explain how to build actual proofs and refu-
tations. We write A true and A false for the judgments that A is
true or false, and in addition write ∆ to assert the conjunction of
all its basic hypotheses, and # to assert contradiction. These four
judgments

J ::= A true | A false | ∆ | #

are defined hypothetically, with respect to a context list Γ:

Γ ::= · | Γ,∆

Intuitively, the hypothetical Γ ` J asserts J under assumption
of all hypotheses in all contexts in Γ. We write A false ∈ Γ as
shorthand for A false ∈ ∆ ∈ Γ.

The formal meaning of the hypothetical judgment is defined by
canonical derivations: for each judgment J , we give a single rule
describing how to derive Γ ` J . Before describing these, we ask
the reader to absorb the following suggestive terminology:

Definition 3 (Terms). A derivation t :: (Γ ` J) is called a term.
A term may be further classified as follows:

• A value is a derivation V :: (Γ ` A true)
• A continuation is a derivation K :: (Γ ` A false)
• A substitution is a derivation σ :: (Γ ` ∆)
• An expression is a derivation E :: (Γ ` #)

2 Lassen and Levy (2007) independently defined an analogous notion,
which they call “ultimate patterns”.

Contexts ∆ ::= · | ∆, A false
Γ ::= · | Γ,∆

Judgments J ::= A true | A false | ∆ | #
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆  A true Γ ` ∆
Γ ` A true

∆  A true −→ Γ,∆ ` #

Γ ` A false

A false ∈ ∆ −→ Γ ` A false
Γ ` ∆

A false ∈ Γ Γ ` A true
Γ ` #

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` #
0

Figure 1. The rules of focusing, plus the daimon rule

A value (i.e., a direct proof of A) is given by a pair of an A-pattern
with a substitution:

∆  A true Γ ` ∆
Γ ` A true

This rule has two premises; if we label the first by p and the second
by σ, the conclusion is annotated p[σ].

A continuation (i.e., a refutation of A) is specified by a map
from any A-pattern to an expression:

∆  A true −→ Γ,∆ ` #

Γ ` A false

This rule, in the notation of Martin-Löf (1971), can have any num-
ber of premises Γ,∆ ` #, one for each derivation of ∆  A true.
Alternatively, we can think of it as a single premise demanding an
implication: for any A-pattern p :: (∆  A true), there exists an
expression Ep :: (Γ,∆ ` #). We call such an implication, proven
by arbitrary means in the metalogic, a metafunction. The precise
definition of the metalogic is deliberately open-ended, because for
the most part we will deal with metafunctions purely by their ex-
tension on patterns, only abandoning this principle when it gets in
the way of decidability (see §3.8). So we simply annotate the con-
clusion of this rule con(ϕ), where ϕ denotes the metafunction.

A substitution (i.e., a derivation of a conjunction of hypothe-
ses) is created by mapping every continuation variable in ∆ to a
continuation:

A false ∈ ∆ −→ Γ ` A false
Γ ` ∆

Again, the premise of this rule demands proving an implication,
that for any continuation variable κ :: (A false ∈ ∆), we can build
a corresponding continuation Kκ :: (Γ ` A false). If we label this
premise ρ, the conclusion is annotated sub(ρ).

Finally, an expression (i.e., a contradiction) is specified by se-
lecting a continuation variable and throwing it a value:

A false ∈ Γ Γ ` A true
Γ ` #

If the first premise is labeled κ and the second V , the conclusion is
annotated κV .

The four rules for forming values, continuations, substitutions,
and expressions are summarized in Figure 1.

2.4 Operational semantics: identity and cut
Although it might not be immediately obvious, the judgments
above precisely define a focusing strategy, in the sense of Andreoli,
for the (propositional) classical sequent calculus. To see this, just
go through the following simple syntactic transformation:



• A context Γ of hypotheses becomes a simple list of formulas
|Γ|, where we erase the “− false” annotations.
• Γ ` A true becomes a sequent under right-focus ` |Γ|;A
• Γ ` A false becomes a sequent under left-inversion A ` |Γ|
• Γ ` # becomes the neutral sequent ` |Γ|
• Γ ` ∆ is expanded into a list of sequents under left-inversion

Since the system defines a sequent calculus, we should expect it
to satisfy the usual important conditions, such as the subformula
property, expansion of identity axioms, and reduction of cuts. The
subformula property is immediate given the following abstract def-
inition of subformula:

Definition 4 (Subformula). B is called a subformula ofA (written
B ≺ A) if there is some pattern ∆  A true such thatB false ∈ ∆.

Proposition 5. Any derivation of Γ ` J mentions only subformu-
las of formulas in Γ and J .

Identity and cut are stated as follows:

Principle 6 (Identity). For all Γ,∆, A:

1. If A false ∈ Γ then Γ ` A false
2. Γ,∆ ` ∆

Principle 7 (Cut). For all Γ,∆, A, J:

1. If Γ ` A false and Γ ` A true then Γ ` #
2. If Γ ` ∆ and Γ,∆ ` J then Γ ` J

It is best to see these principles annotated with terms—identity
corresponds to the following mutually recursive terms Idκ and id,
and cut to the mutually recursive terms K • V and t[σ]:

• Idκ = con(p 7→ κ (p[id])) :: (Γ ` A false), where κ ::
(A false ∈ Γ)

• id = sub(κ 7→ Idκ) :: (Γ,∆ ` ∆)

• K • V = ϕ(p)[σ] :: (Γ ` #), where K = con(ϕ) :: (Γ `
A false) and V = p[σ] :: (Γ ` A true)

• t[σ] :: (Γ ` J) is defined as follows, by analyzing t:

(p[σ0])[σ] = p[σ0[σ]]

(con(ϕ))[σ] = con(p 7→ ϕ(p)[σ])

(sub(ρ))[σ] = sub(κ 7→ ρ(κ)[σ])

(κV )[σ] =

(
K • V [σ] ρ(κ) = K

κ (V [σ]) κ /∈ dom(ρ)

where σ = sub(ρ)

The identity principles are analogous to η-expansion, cut princi-
ples to β-reduction. Operationally, Idκ is the identity continuation,
which takes in an A-value, reconstructs it and passes it to κ, while
id denotes the identity substitution. The cut K • V denotes the re-
sult of applying K to V , while the cut t[σ] denotes the result of
substituting σ in t.

Do these definitions make sense? It is not difficult to see that
both the identity and cut derivations necessarily terminate if the
subformula ordering ≺ is well-founded, which indeed it is for
the patterns we defined above. However, in general, for arbitrary
recursive types, the subformula ordering will not in general be well-
founded. Instead, we adopt the conventions of Girard (2001):

1. Reading the four inference rules for canonical derivations coin-
ductively, we can verify that Idκ and id are productive.

2. However, the definitions of K • V and t[σ] are not necessar-
ily productive, and so we must allow the possibility that cut-
elimination yields divergence.

It is important to note that although the second convention allows
expressions to be partial, it is still the case that values, continua-
tions, and substitutions remain fully-defined, up to their embedded
expressions. We write Ω :: (Γ ` #) to denote the diverging ex-
pression.

In fact, for the sake of building examples and counterexamples,
we will find it useful to include one additional effect besides non-
termination:

Γ ` #
0

The rule 0 is pronounced “wrong”.3 Intuitively, 0 can be thought
of as some bad state (e.g., a pattern-matching exception raised by
a missing branch) that refinement typing will rule out. The purpose
of Ω and 0 will be made more clear in §3.

Finally, we can relate the identity and cut terms by a lemma:

Lemma 8 (Identity composition). For all t :: (Γ,∆ ` J) and
V :: (Γ ` A true) and σ :: (Γ ` ∆):

1. t[id] = t
2. Idκ • V = κV
3. id[σ] = σ

(For the obvious notion of extensional equality.)

Proof. We prove the identities by mutual coinduction. (1) reduces
to (2) in the case (κV )[id] = Idκ • V = κV . (2) reduces to (3) by
Idκ • p[σ] = (κ (p[id]))[σ] = κ (p[id[σ]]) = κ (p[σ]). (3) reduces
to (1) as follows: Substitutions are equal iff they map continuation
variables to equal continuations, and continuations are equal iff
they map patterns to equal expressions. For all κ and p we have
(id[σ])(κ)(p) = (Idκ[σ])(p) = (κ (p[id]))[σ] = σ(κ) • p[id] =
σ(κ)(p)[id] = σ(κ)(p), with the last step by (1).

2.5 An embedding in Agda
Both the syntax of §2.2–§2.3 and the semantics of §2.4 are intrinsic
(or “Church-style”): they consider only well-typed terms (as terms
are well-typed by definition, corresponding to focusing proofs).
In order to make this interpretation more concrete, as well as
clarify some issues and give examples, in this section we will
sketch how the language may be embedded into Agda, a total
functional programming language based on dependent type theory.
Agda’s syntax is Haskell-like, and should hopefully be intelligible
to someone familiar with other dependently-typed languages such
as Coq, but the reader might skim or skip this section on first
reading. The entire development of this paper is available online.4

After a simple prelude, the first thing we do is define the gram-
mar of types Tp. In addition to the connectives described above, we
include, for illustration, datatypes nat for natural numbers, and the
higher-order datatype dom = nat ⊕ ¬vdom. (No doubt something
could be learned by encoding recursive types more abstractly, but
we forgo this for the sake of keeping the formalization concrete.)
Next come hypotheses and contexts (and de Bruijn indices):

data Hyp : Set where
FalseH : Tp -> Hyp

Ctx = List Hyp
data _∈_ : Hyp -> Ctx -> Set where

f0 : {h : Hyp} {∆ : Ctx}
-> h ∈ (h :: ∆)

fS : {h h’ : Hyp} {∆ : Ctx}
-> h’ ∈ ∆ -> h’ ∈ (h :: ∆)

We then define patterns as an inductive family:

3 Girard calls this “daimon”, written z. We borrow the more symmetric
notation 0 from Melliès and Vouillon (2005).
4 http://www.cs.cmu.edu/~noam/refinements/



data __ : Ctx -> Tp -> Set where
wild : forall {A} -> ( FalseH A :: [])  ¬ A
#<> : []  unit
#inl : forall {∆ A B}

-> ∆  A -> ∆  A + B
#inr : forall {∆ A B}

-> ∆  B -> ∆  A + B
#pair : forall {∆1 ∆2 A B}

-> ∆1  A -> ∆2  B -> ∆1 ++ ∆2  A * B
#z : []  nat
#s : forall {∆}

-> ∆  nat -> ∆  nat
#dn : forall {∆}

-> ∆  nat -> ∆  dom
#dk : forall {∆}

-> ∆  ¬ dom -> ∆  dom

Note that variables within curly braces represent implicit parame-
ters in Agda, which the typechecker attempts to infer. For example,
the pair constructor takes two explicit arguments p1 : ∆1  A
and p2 : ∆2  B, while ∆1, ∆2, A, and B are inferred. Finally,
we can define focusing proofs:

data Judge : Set where
True : Tp -> Judge
False : Tp -> Judge
All : Ctx -> Judge
Contra : Judge

LCtx = List Ctx
data _∈∈_ : Hyp -> LCtx -> Set where

s0 : {h : Hyp} {∆ : Ctx} {Γ : LCtx}
-> h ∈ ∆ -> h ∈∈ (∆ :: Γ)

sS : {h : Hyp} {∆ : Ctx} {Γ : LCtx}
-> h ∈∈ Γ -> h ∈∈ (∆ :: Γ)

codata _`_ : LCtx -> Judge -> Set where
-- values
_[_] : forall {Γ A ∆}

-> ∆  A -> Γ ` All ∆
-> Γ ` True A

-- continuations
con : forall {Γ A}

-> (forall {∆}
-> (∆  A) -> ∆ :: Γ ` Contra)

-> Γ ` False A

-- substitutions
sub : forall {Γ ∆}

-> (forall {A}
-> FalseH A ∈ ∆ -> Γ ` False A)

-> Γ ` All ∆

-- expressions
_◦_ : forall {Γ A}

-> FalseH A ∈∈ Γ -> Γ ` True A
-> Γ ` Contra

0 : forall {Γ} -> Γ ` Contra -- daimon/wrong

Observe the use of the codata keyword marking the definition
as coinductive. Now we can define the identity terms exactly as
in §2.4, modulo some de Bruijn index reasoning (note that the ~
symbol is used to define corecursive functions in Agda):

mutual
IdCon : forall {Γ A}

-> (FalseH A ∈∈ Γ) -> Γ ` False A
IdCon κ ~ con(\p -> (sS κ) ◦ (p [ IdSub ]))
IdSub : forall {Γ ∆}

-> ∆ :: Γ ` All ∆
IdSub ~ sub(\κ -> IdCon (s0 κ))

Agda verifies that these definitions are productive. In formal detail,
the proof of cut is slightly more involved than was suggested
above, since as is typical with such proofs, one must generalize the
induction hypothesis to allow substitution for a context anywhere in
the context list, and also prove a weakening lemma. After defining
an inductive family split Γ ∆ Γ’ which encodes that Γ’ splits
into a context list Γ and a context ∆ (with constants sp0 and spS),
we prove the following easy lemmas:

split< : forall {Γ ∆ Γ’ h}
-> split Γ ∆ Γ’ -> h ∈∈ Γ’
-> Either (h ∈ ∆) (h ∈∈ Γ)

weaken : forall {Γ ∆ Γ’ J}
-> split Γ ∆ Γ’ -> Γ ` J -> Γ’ ` J

Now we can state and prove cut, essentially as in §2.4, but just
slightly more rigorously:

mutual
Cut• : forall {Γ A}

-> Γ ` False A -> Γ ` True A -> Γ ` Contra
Cut• (con ϕ) (p [ σ ]) ~ Cut[] sp0 (ϕ p) σ
Cut[] : forall {Γ ∆ Γ’ J}

-> split Γ ∆ Γ’
-> Γ’ ` J -> Γ ` All ∆ -> Γ ` J

Cut[] w (p [ σ0 ]) σ ~ p [ Cut[] w σ0 σ ]
Cut[] w (con ϕ) σ ~ con (\p -> Cut[] (spS w) (ϕ p)

(weaken sp0 σ))
Cut[] w (sub ρ) σ ~ sub (\κ -> Cut[] w (ρ κ) σ)
Cut[] w (κ ◦ V) σ with split< w κ | σ
... | Left i | sub ρ ~ Cut• (ρ i) (Cut[] w V σ)
... | Right κ’ | _ ~ κ’ ◦ (Cut[] w V σ)
Cut[] w 0 σ ~ 0

Here Agda rightfully complains that Cut• and Cut[] are not pro-
ductive, though it accepts the definition. Having irritated Agda
once, we may as well do so again with the following definition:

Ω : forall {Γ} -> Γ ` Contra
Ω ~ Ω

It is worth pointing out that in all of the terms we defined above
and which we will define below, types are mentioned only in sig-
natures, not in the actual bodies of terms—even though we are pro-
gramming à la Church. This is a consequence of the subformula
property, that types are always inferable from context.

EXAMPLE 1. We define addition (as a continuation transformer):

plus : forall {Γ}
-> (FalseH nat ∈∈ Γ) -> Γ ` False (nat * nat)

plus κ = con (\p -> (sS κ) ◦ (plus* p [ IdSub ]))
where

plus* : forall {∆} -> ∆  nat * nat -> ∆  nat
plus* (#pair #z n) = n
plus* (#pair (#s m) n) = #s (plus* (#pair m n))

Here we are using the full power of the higher-order representation,
defining the continuation plus in terms of the auxiliary meta-
function plus*, which adds two nat-patterns. �

EXAMPLE 2. We define a continuation on dom = nat ⊕ ¬vdom
which attempts to apply its argument to zero:

app0 : forall {Γ} -> Γ ` False dom
app0 = con app0*

where
app0* : forall {∆} -> ∆  dom -> _ ` Contra
app0* (#dk wild) = (s0 f0) ◦ (#dn #z [ Sub0 ])
app0* _ = 0



Here Sub0 stands for the empty substitution. Note that without the
extra case “app0* _ = 0”, Agda will not accept the definition.

�

Both examples illustrate classic applications for refinement types.
Beyond the fact that plus takes a pair of nats and returns a nat, we
might for instance like to know that it takes a pair of even nats to
another even nat, a pair of odd nats to an even nat, etc. Likewise,
when we write app0 we have in mind that it will only be called with
an argument that falls under the ¬vdom branch of the dom datatype,
but this invariant is not captured by its type. The compiler cannot
rule out the senseless pattern branch unless we refine the type of
app0 to explicitly state our invariant.

3. Refining focusing proofs
Above we described an intrinsic Curry-Howard interpretation of
focusing proofs as well-typed terms of a language with recursive
datatypes and continuations. In this section, we will give an ex-
trinsic view of refinement-typing of those well-typed terms. This
kind of two-layer approach originates with Freeman and Pfenning
(1991), who introduced refinements as a way of verifying addi-
tional properties of already well-typed programs, rather than for
defining new programs.5

3.1 Refining types
In order to check additional properties of programs, we must be
able to specify these properties. Following Pfenning (2008), we
will try to avoid confusion between ordinary types A and refine-
ment properties S v A of those types by calling the latter sorts,
though we will still refer to the process of verifying sorts of terms
as refinement typing. A sort S v A is not a subtype ofA in the tra-
ditional sense. For example, while it will be true (by definition) that
every value of sort A has type A, it will also be true (by definition)
that every continuation accepting sort S accepts type A.

Definition 9 (Refinement contexts). A refinement context Ψ v ∆
is a mapping from continuation variables κ :: (A false ∈ ∆) to a
set of sorts refining A.

For notational convenience, we will sometimes write a refinement
context as a simple list of hypotheses κ1�: S1, . . . , κn�: Sn, where
the same κ can appear any number of times. We write κ�: S rather
than κ : S to emphasize that κ stands for a continuation accepting
sort S, not a value of sort S. The set Ψ(κ) is interpreted conjunc-
tively, i.e., we assume that κ accepts all of the sorts S ∈ Ψ(κ) (but
note that because of the contravariant reading, this is the same as
saying that it accepts the union sort

S
Ψ(κ)).

It will be useful to have several operations on refinement
contexts. Let Ψ1 v ∆1 and Ψ2 v ∆2. Their concatenation
(Ψ1,Ψ2) v (∆1,∆2) is defined by

(Ψ1,Ψ2)(κ) =

(
Ψ1(κ) if κ ∈ dom(∆1)

Ψ2(κ) if κ ∈ dom(∆2)

The unit of concatenation is · v · (which denotes the empty map).

5 It is worth noting, though, that historically, all approaches to intersection
and union types have been two-layer in the sense that they begin by defining
untyped terms, and then define typing for those terms. The difference is that
we start with a typed rather than an untyped syntax. But this is simply a
generalization of the traditional approach, because (as the well-known pun
goes) untyped syntax is really “uni-typed”. Indeed, because we defined both
syntax and semantics generically with respect to patterns, the untyped story
is literally what we get by taking all patterns to introduce a single, universal
type, without any modification to the formalism. The benefit we derive from
starting with a (multi-)typed syntax is mainly conceptual, because it has a
direct logical interpretation and so is easier to reason about.

> v A
S v A T v A
S ∩ T v A

⊥ v A
S v A T v A
S ∪ T v A

S v A
¬vS v ¬vA

S v A T v B
S ⊗ T v A⊗B

S v A T v B
S ⊕ T v A⊕B

Figure 2. Some sort constructors

Let Ψ1,Ψ2 v ∆. Their meet (Ψ1 ∧Ψ2) v ∆ is defined by

(Ψ1 ∧Ψ2)(κ) = Ψ1(κ) ∪Ψ2(κ)

The unit for the meet is >> v ∆ (defined by >>(κ) = ∅).
Just as the meaning of types was defined by their patterns, the

meaning of sorts is defined by pattern-inversion. To define the sort
S v A one specifies, for every pattern p :: (∆  A true), a set
Jp : SK of refinement contexts of ∆. Intuitively, the set Jp : SK is
interpreted disjunctively, as the different possible refinements of the
variables bound by the pattern, assuming it has the given sort. For
example, intersection and union sorts are defined by:

Jp : S ∩ T K = {(Ψ1 ∧Ψ2) | Ψ1 ∈ Jp : SK,Ψ2 ∈ Jp : T K}
Jp : S ∪ T K = Jp : SK ∪ Jp : T K

Jp : >K = {>>}
Jp : ⊥K = ∅

. . . and congruence refinements for the type constructors by:

Jκ : ¬vSK = {(κ�: S)}
J(p1, p2) : S ⊗ T K = {(Ψ1,Ψ2) | Ψ1 ∈ Jp1 : SK,Ψ2 ∈ Jp2 : T K}

Jinl p : S ⊕ T K = Jp : SK

Jinr p : S ⊕ T K = Jp : T K

For these definitions to make sense, we have to respect some im-
plicit conventions on the formation of sorts. For example, the bi-
nary union and intersection can only be formed when both S and
T refine the same type. These implicit conventions are described in
Figure 2. In addition to these generic refinement constructors, we
can define some more interesting refinements of datatypes. Here
are a few refinements of nat:

Jz : evenK = {·} Jz : oddK = Jz : posK = ∅

Js p : evenK = Jp : oddK Js p : oddK = Jp : evenK

Js p : posK = Jp : >K

And a couple refinements of dom (recall dom = nat⊕ ¬vdom):

Jdn p : domevenK = Jp : evenK Jdn p : dom∗K = ∅

Jdk p : domevenK = Jp : ¬v domevenK Jdk p : dom∗K = Jp : ¬v>K

The reader can try working out the following examples:

J(κ1, κ2) : ¬v even⊗ ¬v oddK = {(κ1�: even, κ2�: odd)}
Jκ : ¬v even ∩ ¬v oddK = {(κ�: even, κ�: odd)}
Jκ : ¬v even ∪ ¬v oddK = {(κ�: even), (κ�: odd)}

Jz : even ∩ oddK = ∅
Jz : even ∪ oddK = {·}

3.2 Refining terms
Just as focusing proofs were defined generically by reference to
patterns—without mentioning any particular types—refinement
typing is defined generically by reference to pattern-inversion. The
refinement typing judgment takes the form Ξ � t : J , where
t :: (Γ ` J) is a term, J refines J , and Ξ refines the context list Γ



Refinement contexts
Ψ v ∆ maps every κ :: (A false ∈ ∆) to a set of S v A
Ξ v Γ maps every κ :: (A false ∈ Γ) to a set of S v A

Refinement judgments
t:J ::= V : S | K�: S | σ : ∆ | E : #

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ ∈ Jp : SK Ξ � σ : Ψ

Ξ � p[σ] : S

Ψ ∈ Jp : SK −→ Ξ,Ψ � ϕ(p) : #

Ξ � con(ϕ)�: S

S ∈ Ψ(κ) −→ Ξ � ρ(κ)�: S
Ξ � sub(ρ) : Ψ

S ∈ Γ(κ) Γ � V : S

Γ � κV : #
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(no rule for 0)

Figure 3. Refinement typing of focusing proofs

(which means that it sends any κ :: (A false ∈ Γ), to a set Ξ(κ) of
sorts of A). We adopt the same notational convention for Ξs as we
did for Ψs.

A value p[σ] has sort S if there is some Ψ in Jp : SK such that
σ satisfies all of Ψ:

Ψ ∈ Jp : SK Ξ � σ : Ψ

Ξ � p[σ] : S

Note that implicit in this rule are the conditions:

p :: (∆  A true) σ :: (Γ ` ∆)

Ξ v Γ Ψ v ∆ S v A

But it is safe to leave these conditions implicit, since they are the
only sensical way to interpret the rule, by our definition of patterns,
substitutions, and pattern-inversion.

A continuation con(ϕ) accepts sort S v A if for every A-
pattern p, in every possible context Ψ ∈ Jp : SK, the expression
ϕ(p) is well-sorted:

Ψ ∈ Jp : SK −→ Ξ,Ψ � ϕ(p) : #

Ξ � con(ϕ)�: S

Again, this rule leaves implicit various conditions that are forced
for the rule to make sense. Notice that if S is a union, checking the
continuation could involve checking the same branch ϕ(p) within
multiple refinement contexts.

A substitution sub(ρ) satisfies all of Ψ v ∆ if for every
continuation variable κ :: (A false ∈ ∆), for every hypothesis
S ∈ Ψ(κ), the continuation ρ(κ) accepts sort S:

S ∈ Ψ(κ) −→ Ξ � ρ(κ)�: S
Ξ � sub(ρ) : Ψ

Notice that if Ψ comes from inverting a pattern at an intersection,
checking the substitution could involve checking the same contin-
uation ρ(κ) against multiple sorts.

An expression κV is well-sorted in context Ξ if there is at least
some hypothesis S ∈ Ξ(κ) such that V has sort S:

S ∈ Ξ(κ) Ξ � V : S

Ξ � κV : #

Finally, there is no rule that makes the expression 0 well-sorted,
which brings us to the following important slogan:

well-sorted programs don’t go 0

The complete set of rules for refinement typing are listed for refer-
ence in Figure 3.

3.3 Refining cut and identity
The technical meaning of the slogan above is contained in the sort
preservation theorem:

Theorem 10 (Sort preservation of cuts).

1. If Ξ � K�: S and Ξ � V : S then Ξ � K • V : #
2. If Ξ � σ : Ψ and Ξ,Ψ ` t : J then Ξ,Ψ ` t[σ] : J

The proof of sort preservation exactly mirrors the structure of cut-
elimination, since the rules for refinement typing precisely mirror
the rules for building focusing proofs. Again, we must adopt a
coinductive interpretation of refinement typing, and the convention
that the diverging expression Ω is always well-sorted.

Similarly, the proof of identity can be reflected back to sorts:

Theorem 11 (Sort identity).

1. If S ∈ Ξ(κ) then Ξ � Idκ�: S
2. Ξ,Ψ � id : Ψ

3.4 Subsorting: the identity coercion interpretation
In fact, the identity terms Idκ and id are much more interesting
in the setting of refinement typing, since they give us a coercion
interpretation of subsorting.

Definition 12 (Subsorting). Let S, T v A. We say that S is a
subsort of T if κ�: T � Idκ�: S. The subsorting relationship is
written S ≤A T , or just S ≤ T leaving A implicit. We write
S ≡ T if S ≤ T and T ≤ S, and S 6≤ T if not S ≤ T .

Intuitively, S ≤ T says that we can uniformly convert any T -
continuation into an S-continuation by precomposing it with the
identity—hence the identity coercion interpretation. We also have
an equivalent interpretation using the identity substitution id:

Definition 13. Let Ψ,Ψ′ v ∆. We say that Ψ is a subcontext of
Ψ′ (written Ψ ≤∆ Ψ′) if Ψ � id : Ψ′.

Proposition 14. S ≤A T iff for all A-patterns p, for every
Ψ ∈ Jp : SK there exists Ψ′ ∈ Jp : T K such that Ψ ≤ Ψ′.

Proof. Immediate by definition of the identity terms.

Proposition 15. Both ≤A and ≤∆ are reflexive and transitive.

Proof. Reflexivity is immediate by sort identity, while transitivity
follows from sort preservation combined with the identity compo-
sition lemma.

Proposition 16 (Term inclusion/reverse inclusion).
• If Ξ � V : S and S ≤ T then Ξ � V : T
• If Ξ � K�: T and S ≤ T then Ξ � K�: S
• If Ξ � σ : Ψ and Ψ ≤ Ψ′ then Ξ � σ : Ψ′

• If Ξ,Ψ′ � E : # and Ψ ≤ Ψ′ then Ξ,Ψ � E : #

Proof. All consequences of the identity composition lemma.

Proposition 17. ≤A is a distributive lattice with ∩, ∪, >, and ⊥.

Proposition 18. ⊕,⊗, and ¬v obey the usual covariant and con-
travariant laws:

1. If S1 ≤ T1 and S2 ≤ T2 then S1 ⊗ T1 ≤ S2 ⊗ T2

2. If S1 ≤ T1 and S2 ≤ T2 then S1 ⊕ T1 ≤ S2 ⊕ T2

3. If T ≤ S then ¬vS ≤ ¬vT
Proposition 19. Intersections and unions distribute through sums
and products, as follows:

1. S ⊗⊥ ≡ ⊥



2. S ⊗ (T1 ∩ T2) ≡ (S ⊗ T1) ∩ (S ⊗ T2)
3. S ⊕ (T1 ∩ T2) ≡ (S ⊕ T1) ∩ (S ⊕ T2)
4. S ⊗ (T1 ∪ T2) ≡ (S ⊗ T1) ∪ (S ⊗ T2)
5. S ⊕ (T1 ∪ T2) ≡ (S ⊕ T1) ∪ (S ⊕ T2)

Proof (of Props. 17–19). Immediate by Prop. 14 and the pattern-
inversion rules.

Besides these typical properties, more interesting are the laws and
non-laws we can derive for distributing intersections and unions
through call-by-value negation:

Proposition 20.

1. (i) > ≡ ¬v⊥ and (ii) ¬vS ∩ ¬vT ≡ ¬v (S ∪ T )
2. (i) ¬v> 6≤ ⊥ and (ii) in general ¬v (S ∩ T ) 6≤ ¬vS ∪ ¬vT

Proof. 1(i) reduces to checking · � Idκ�: ⊥, which holds vacu-
ously since Jp : ⊥K = ∅. 1(ii) reduces to checking κ�: S, κ�: T �
Idκ�: S ∪ T . Since Jp : S ∪ T K = Jp : SK ∪ Jp : T K, this reduces
to checking that Idκ accepts both S and T , and that holds by sort
identity.

2(i) fails because Jp : ⊥K is empty but Jp : ¬v>K is not. 2(ii)
requires that either κ�: S ∩ T � Idκ�: S or κ�: S ∩ T � Idκ�: T , but
these hold only if S ≤ T or T ≤ S.

3.5 Revisiting the value/evaluation context restrictions
In this section we explain in what sense the value and evaluation
context restrictions, as well as the failures of subtyping described
in the introduction, are already built into focusing proofs. Let us
fix a type A, and sorts S, T v A. We begin by observing that the
following rules are admissible:

Ξ � V : S Ξ � V : T
Ξ � V : S ∩ T

Ξ � V : S
Ξ � V : S ∪ T

Ξ � V : T
Ξ � V : S ∪ T

The value restriction comes by default in these rules, in the trivial
sense that they are rules for typing values. But how does this
relate to the value restriction (required for intersections but not
for unions) in ML? In general, arbitrary terms of call-by-value λ-
calculus are embedded in the focusing language by CPS translation.
We can translate ML terms either as expressions in a context with
a distinguished continuation variable accepting type A, or (slightly
less directly) as values of double-negated type ¬v¬vA. For simplicity
let’s take the latter interpretation. Thus the usual unrestricted union-
introduction rules correspond to the following admissible rules for
checking values of double-negated type:

Ξ � V : ¬v¬vS
Ξ � V : ¬v¬v (S ∪ T )

Ξ � V : ¬v¬vT
Ξ � V : ¬v¬v (S ∪ T )

On the other hand, the unrestricted intersection-introduction rule
corresponds to the following:

Ξ � V : ¬v¬vS Ξ � V : ¬v¬vT
Ξ � V : ¬v¬v (S ∩ T )

∗

which is not admissible. Similarly, we can observe that the follow-
ing rules are admissible:

Ξ � K�: S
Ξ � K�: S ∩ T

Ξ � K�: T
Ξ � K�: S ∩ T

Ξ � K�: S Ξ � K�: T
Ξ � K�: S ∪ T

These rules have an evaluation context restriction by default, in the
sense that they check call-by-value continuations, and call-by-value
continuations are isomorphic to evaluation contexts.6 This time, we
can lift intersections through double-negation:

6 At least to a first approximation, cf. Danvy (2004).

Ξ � K�: ¬v¬vS
Ξ � K�: ¬v¬v (S ∩ T )

Ξ � K�: ¬v¬vT
Ξ � K�: ¬v¬v (S ∩ T )

But we cannot do so for unions:
Ξ � K�: ¬v¬vS Ξ � K�: ¬v¬vT

Ξ � K�: ¬v¬v (S ∪ T )
∗

By the inclusion/reverse inclusion lemma, these facts about refine-
ment typing reduce to the following properties of subsorting:

Proposition 21.

1. If S ≤ T then ¬v¬vS ≤ ¬v¬vT
2. In general ¬v¬vS ∩ ¬v¬vT 6≤ ¬v¬v (S ∩ T )
3. In general ¬v¬v (S ∪ T ) 6≤ ¬v¬vS ∪ ¬v¬vT

Proof. (1) reduces to Prop. 18.3, while (2) and (3) reduce to the
failure of Prop. 20.2(ii), since

¬v¬vS ∩ ¬v¬vT ≡ ¬v (¬vS ∪ ¬vT ) 6≤ ¬v¬v (S ∩ T )

¬v¬v (S ∪ T ) ≡ ¬v (¬vS ∩ ¬vT ) 6≤ ¬v¬vS ∪ ¬v¬vT

Finally, we can consider the subtyping laws for call-by-value func-
tions by the encoding A→v B = ¬v (A⊗ ¬vB). We have that

(A→v C) ∩ (B→v C) = ¬v (A⊗ ¬vC) ∩ ¬v (B ⊗ ¬vC)

≡ ¬v ((A⊗ ¬vC) ∪ (B ⊗ ¬vC))

≡ ¬v ((A ∪B)⊗ ¬vC)

= (A ∪B)→v C
but on the other hand

(A→v B) ∩ (A→v C) = ¬v (A⊗ ¬vB) ∩ ¬v (A⊗ ¬vC)

≡ ¬v ((A⊗ ¬vB) ∪ (A⊗ ¬vC))

≡ ¬v (A⊗ (¬vB ∪ ¬vC))

6≤ ¬v (A⊗ ¬v (B ∩ C))

= A→v (B ∩ C)

3.6 Subsorting: the no-counterexamples interpretation
We have given a synthetic reconstruction of the value and evalua-
tion context restrictions proposed by Davies and Pfenning (2000)
and Dunfield and Pfenning (2004), within the logical setting of fo-
cusing. This is reassuring, because it suggests that focusing type
systems can be used as a safe foundation for effectful languages.
But it doesn’t quite explain why omitting those restrictions leads
to concrete safety violations in those languages. In this section we
begin an attempt at answering that question, by considering another
possible interpretation of subsorting.

Definition 22 (Safety). We say that the pair of a value V :: (Γ `
A true) and continuationK :: (Γ ` A false) are a safety violation
(written V 6⊥ K) if K • V = 0. We say that V and K are safe
(written V ⊥K) if they are not a safety violation.

Note that ⊥ is actually the complement of the orthogonality rela-
tion in ludics.7

Definition 23 (Safe subsorting). Let S, T v A. We say that S is a
safe subsort of T (written S 6 T ) if V ⊥K for all closed V and
K such that � V : S and � K�: T .

We call this the no-counterexamples interpretation of subsorting.
Clearly, if we have an explicit witness to the safety of a subsort-
ing relationship using the identity coercion, then there can be no
counterexamples.

7 The idea of defining orthogonality as safety rather than as termination
comes from Melliès and Vouillon (2005).



Theorem 24 (Soundness). S ≤ T implies S 6 T

Proof. By Prop. 16—either value inclusion or continuation reverse
inclusion will do—combined with sort preservation.

The really interesting question is completeness: if the identity co-
ercion does not sortcheck, can we come up with an explicit safety
violation, i.e.,

does S 6≤ T imply S 66 T?

But whereas the identity coercion interpretation is fixed by the
logical rules of focusing and the definitions of the connectives—
and thereby open-ended with respect to language extension—the
no-counterexamples interpretation is dependent upon the precise
set of non-logical effects that there are in the language, besides Ω
and 0. In general, the question we need to ask is,

with what set of available effects, and for what types A,
does S 6≤A T imply S 66A T?

We will not attempt to give a full answer to this general question.
However, in this section we will try to give a partial answer, by
showing how the subtyping non-law Prop. 20.2(ii) is not univer-
sally safe: we exhibit a particular type (¬vnat) at which a particular
effect (non-determinism) is sufficient for building a counterexam-
ple (which can also be translated into counterexamples to all the
other invalid subtyping laws and refinement typing rules of §3.5).
In fact, the effects Ω and 0 are already sufficient to build a coun-
terexample to Prop. 20.2(i), at any type:

Notation. If K is a continuation accepting type A, we write ↓K
to stand for the continuation treated as a value of type ¬vA, i.e.,
↓K = κ[sub(κ 7→ K)].

Proposition 25. ¬v> 66 ⊥

Proof. A safety violation is provided by pairing the continuation
which diverges on all inputs, treated as a value, together with the
continuation that ignores its argument and returns 0. Formally,
↓ con(p 7→ Ω) 6⊥ con(κ 7→ 0). The left-hand value has sort ¬v>,
while the right-hand continuation accepts sort ⊥.

Now we introduce non-determinism into the language.

Definition 26 (Choice). For any pair of expressions E1, E2, we
can form their erratic choice E1 ‖ E2, such that E1 ‖ E2 = 0 if
either E1 = 0 or E2 = 0. Erratic choice is sortchecked by:

Ξ � E1 : # Ξ � E2 : #

Ξ � E1 ‖ E2 : #

Proposition 27. In the presence of erratic choice, the principle
¬v (S ∩ T ) 6 ¬vS ∪ ¬vT fails at sorts S = ¬veven, T = ¬vodd.

Proof. Let K01 be the ¬vnat-continuation which applies its argu-
ment to 0 or 1, non-deterministically using erratic choice:

K01 = con(κ 7→ κ 0 ‖ κ 1)

We have that � K01�: S ∩ T , although neither � K01�: S nor
� K01�: T . Hence � ↓K01 : ¬v (S ∩ T ). Note that ↓K01 is
a ¬v¬vnat-value, which recall can be thought of as nat-returning
computation. Now we construct a ¬v¬vnat-continuation K∗ such
that ↓K01 6⊥ K∗. Informally, we define K∗ as the continuation
which evaluates its argument twice, checks that the parity of the
results is the same, and returns 0 if not. Taking some liberties with
syntactic sugar, we can write K∗ like so:

K∗ = con( κ 7→κ con(m 7→
κ con(n 7→
if parity(m) = parity(n) then Ω else 0)))

We have that � K∗�: ¬vS ∪ ¬vT , although not � K∗�: ¬v (S ∩ T ).
Since ↓K01 6⊥K∗, we have the desired counterexample.

3.7 Refinements in Agda
The foregoing prose description of a refinement type system for
focusing proofs translates almost directly into Agda code. We will
not go through its entirety, but only some choice snippets.

The development kicks off by defining a grammar of sort con-
structors, including the following:

data Sort : Tp -> Set where
> : forall {A} -> Sort A
⊥ : forall {A} -> Sort A
_∩_ : forall {A} -> Sort A -> Sort A -> Sort A
_∪_ : forall {A} -> Sort A -> Sort A -> Sort A
¬r : forall {A} -> Sort A -> Sort (¬ A)
_*r_ : forall {A B} -> Sort A -> Sort B -> Sort (A * B)
_+r_ : forall {A B} -> Sort A -> Sort B -> Sort (A + B)

as well as the datasorts even, odd, pos, domeven, and dom*. We
define refinement hypotheses and contexts:

data RHyp : Hyp -> Set where
ConH : {A : Tp} -> Sort A -> RHyp (FalseH A)

data RCtx (∆ : Ctx) : Set where
R∆ : ({h : Hyp} -> h ∈ ∆ -> List (RHyp h)) -> RCtx ∆

And then the various operations on refinement contexts (for which
we list only types):

[]x : RCtx []
_++x_ : forall {∆1 ∆2}

-> RCtx ∆1 -> RCtx ∆2 -> RCtx (∆1 ++ ∆2)
>x : forall {∆} -> RCtx ∆

_∧x_ : forall {∆} -> RCtx ∆ -> RCtx ∆ -> RCtx ∆

hyps : forall {∆ h} -> RCtx ∆ -> h ∈ ∆ -> List (RHyp h)

Now, the inversion function is defined by a big induction on pat-
terns and sorts:

invert : forall {∆ A}
-> (∆  A) -> Sort A -> List (RCtx ∆)

invert p (S ∩ T) =
concat (map (\Ψ1 -> map (\Ψ2 ->
Ψ1 ∧x Ψ2) (invert p T)) (invert p S))

invert p (S ∪ T) = invert p S ++ invert p T
invert p > = >x :: []
invert p ⊥ = []
-- (cases for ¬r, *r, and +r omitted)
invert #z even = []x :: []
invert (#s n) even = invert n odd
-- (cases for odd, pos, dom, and domeven omitted)

We define refinement context lists RLCtx Γ with operations []xx,
Ψ ::xx Ξ, and hyps’ Ξ κ, and then finally the coinductive rules
of refinement typing:

data RJudge : Judge -> Set where
RVal : {A : Tp} -> Sort A -> RJudge (True A)
RCon : {A : Tp} -> Sort A -> RJudge (False A)
RSub : {∆ : Ctx} -> RCtx ∆ -> RJudge (All ∆)
RExp : RJudge Contra

codata _�_is_ : forall {Γ J}
-> RLCtx Γ -> (Γ ` J) -> RJudge J -> Set where

tpval : forall {Γ A ∆}
{p : ∆  A} {σ : Γ ` All ∆}
{Ξ : RLCtx Γ} {S : Sort A} {Ψ : RCtx ∆}

-> Ψ ∈ invert p S -> Ξ � σ is RSub Ψ
-> Ξ � p [ σ ] is RVal S

tpcon : forall {Γ A}
{ϕ : forall {∆}



-> (∆  A) -> ∆ :: Γ ` Contra}
{Ξ : RLCtx Γ} {S : Sort A}

-> (forall {∆} {p : ∆  A} {Ψ : RCtx ∆}
-> Ψ ∈ invert p S -> Ψ ::xx Ξ � ϕ(p) is RExp)

-> Ξ � con(ϕ) is RCon S

tpsub : forall {Γ ∆}
{ρ : forall {A}

-> FalseH A ∈ ∆ -> Γ ` False A}
{Ξ : RLCtx Γ} {Ψ : RCtx ∆}

-> (forall {A} {κ : FalseH A ∈ ∆} {S : Sort A}
-> ConH S ∈ hyps Ψ κ -> Ξ � ρ(κ) is RCon S)

-> Ξ � sub(ρ) is RSub Ψ

tpexp : forall {Γ A}
{κ : FalseH A ∈∈ Γ} {V : Γ ` True A}
{Ξ : RLCtx Γ} {S : Sort A}

-> ConH S ∈ hyps’ Ξ κ -> Ξ � V is RVal S
-> Ξ � κ ◦ V is RExp

Again, whether or not you are fluent in Agda, it is worthwhile to
pay attention to the overall structure of these rules. If we ignore
the curly-bracketed implicit conditions, they look very much like
extrinsic typing rules for raw syntax—but the implicit premises
make clear that this is an extrinsic semantics of typed terms.

Another thing these rules are not is a refinement typing algo-
rithm. The judgment Ξ � t is J is defined as a coinductive
family, and in order to verify that a term is well-sorted, we have
to build an explicit witness auxiliary to the term. This runs some-
what counter to the original philosophy of refinement types, as a
lightweight extension of ML-style typing—what we would really
like is a decision procedure for refinement typing. But in order to
obtain one, it turns out we will have to move from an infinitary,
coinductive syntax, to a finitary, inductive one.

3.8 The trouble runs wide and deep
There are two main hurdles to directly defining a decision pro-
cedure for refinement typing on this representation of focusing
proofs. One is that some types (such as nat) have infinitely many
patterns, so that some metafunctions are “infinitely wide”. Even if
such metafunctions are represented constructively (as they are in
Agda), refinement checking is still undecidable:

Proposition 28. Assuming metafunctions may be defined by prim-
itive recursion, there exists a class of closed nat-continuations for
which refinement typing is undecidable.

Proof. For any Turing MachineM , we define the nat-continuation
KM = con(ϕM ) by primitive recursion on nat-patterns, as

ϕM (n) =

(
0 If M halts within n steps
Ω otherwise

Then � KM�: > if and only if M never halts.

The second problem is that the coinductive interpretation of the fo-
cusing rules allows terms that are “infinitely deep”. Again, in prac-
tice such terms will be represented by a finite system of corecursive
definitions in the metalogic—this was very convenient for defining
Idκ and id, for example—but how can we refinement check such
terms within the metalogic, without being able to reflect on their
representation?

4. A shallow, dis-functional syntax
We now systematically construct an alternative syntax for focus-
ing proofs by applying the well-known programming languages
techniques of pattern-compilation and defunctionalization. These
address the two orthogonal concerns of §3.8: pattern-compilation

produces terms that are finitely wide albeit infinitely deep, while
defunctionalization gives these infinitely deep terms a finite, cyclic
representation. In proof-theoretic terms, this attempt to relate in-
finitary and finitary derivations is very similar in spirit to the work
of Mints (1978) and Buchholz (1991). These particular transforma-
tions seem to be closely related to the sequent calculus for infinite
descent and cyclic proofs of Brotherston and Simpson (2007).

4.1 Pattern-compilation: introducing value variables
If we want to be able to replace an infinite collection of patterns
with a finite one, we must be able to end pattern-matching early,
binding a value rather than a continuation. So we update the def-
inition of contexts (Def. 1) by including hypotheses “A true” in
addition to “A false”, and call a particular hypothesisA true ∈ ∆ a
value variable x. As a notational convenience, we write h to stand
for either form of hypothesis, and ` :: (h ∈ ∆) for either kind of
variable.

We now replace every pattern-formation rule with an axiom,
i.e., a rule with no premises. For example, products and sums are
redefined as follows:

·  1 true A true, B true  A⊗B true

A true  A⊕B true B true  A⊕B true

These rules are labelled with the shallow patterns (), (_, _), inl _,
and inr _ (which bind zero, two, one, and one value variable(s)
respectively). Likewise, and more significantly, we redefine nat
with the following axioms:

·  nat true nat true  nat true

Whereas before there were infinitely many nat-patterns, now there
are only two: z and s _.

After this shallow redefinition of patterns, the four rules of
focusing need no modification except by generalizing the rule for
building substitutions in the obvious way:

h ∈ ∆ −→ Γ ` h
Γ ` ∆

Of course, this is not enough: we need a way of using value
variables. Since the only way to use a continuation variable was
to pass it a value, we might consider the symmetric rule:

A true ∈ Γ Γ ` A false
Γ ` #

But this is insufficiently general—for example, we can’t even de-
rive the identity principle on truth hypotheses. The solution is to
first generalize the judgmentA false to allow case-analysis towards
an arbitrary term:

∆  A true −→ Γ,∆ ` J
Γ ` A implies J

and then state the value variable rule as follows:
A true ∈ Γ Γ ` A implies J

Γ ` J
We annotate this rule casex ofK.

With this updated definition of focusing proofs, it is easy to
derive the identity principle for value variables: for a variable x ::
(A true ∈ Γ), the value Idx :: (Γ ` A true) is defined by

Idx = casex of con(p 7→ p[id])

Note, though, that again a coinductive interpretation of proofs is
essential, because now even the identity coercion for nats will
be infinitely deep. It is also easy to verify the the cut princi-
ples: the case _ of _ construct simply introduces permutative con-



versions. For example, the cut K • casex of con(ϕ) reduces to
casex of con(p 7→ K • ϕ(p)).

The changes to the Agda embedding of §2.5 are minor, and we
omit them for lack of space.

4.2 Defunctionalization
From a proof-theoretic point of view, defunctionalization amounts
to picking a finite basis of combinators for building proofs, and
in particular for building metafunctions. While this was already
implicit when the higher-order rules were interpreted in a particular
constructive setting (such as Agda), defunctionalization makes the
commitment explicit. Moreover, the key property it gives us is the
ability to define syntactic equality of metafunctions, using it as a
decidable, conservative approximation to extensional equality.

Another very important consequence of defunctionalization is
that we must internalize the cut principles as combinators, because
we cannot always represent a program with a finite, cut-free deriva-
tion. Concretely, from a programmer’s perspective, this just corre-
sponds to the ordinary fact that sometimes we need to write auxil-
iary functions.

There are a few more subtleties to defunctionalization in our
setting, although these become more or less obvious by “following
the arrows” in Agda. For example, since there are two different
kinds of metafunctions (ϕs and ρs) with different metatypes, we
need two separate “apply” functions: match takes an identifier
ϕ and a pattern p and returns the term corresponding to ϕ(p),
while lookup takes an identifier ρ and a variable ` and returns the
corresponding value/continuation ρ(`). The reader can consult the
Agda encoding for an explanation of more such subtleties.

5. Decidable refinement types
After pruning the infinite width of terms by introducing value
hypotheses, and taming their infinite depth by defunctionalization,
we can define a decision procedure for refinement typing. Again
we describe this algorithmic type system in two stages.

5.1 Refinement typing of pattern-compiled proofs
The pattern-inversion operator is revised to operate on shallow
patterns just as one would expect, for example with

J(x, y) : S ⊗ T K = {(x : S, y : T )} Jsx : evenK = {(x : odd)}
The inversion rules for unions and intersections remain unchanged.
The refinement typing rules require more subtle revision, however.
It helps to understand why we can’t directly use the value-typing
rule based on deep patterns:

Ψ ∈ Jp : SK Ξ � σ : Ψ

Ξ � p[σ] : S

Suppose, concretely, that we want to check the value sx[x 7→ Idy]
(syntactic salt for “s y”) at sort even∪odd. Pattern-inversion results
in two possible refinement contexts: (x : even) and (x : odd). But
we cannot necessarily verify that Idy is either even or odd, because
Ξ might only tell us that, say, y : odd ∪ even. The problem is that
the rule requires a non-invertible choice, and we cannot make a
good one.

The solution is to eliminate the need for such choices by gen-
eralizing the refinement typing judgments to take a finite list of
refinements, interpreted as follows:

Judgment Interpretation
Ξ � V :

−→
S V checks against a union of sorts

Ξ � K :
−→
S > J K takes the intersection of sorts to J

Ξ � σ :
−→
Ψ σ satisfies the union of refinement contexts

Ξ � E : # E is well-sorted (as before)

The rule for value-typing now makes no premature choices:

Ξ � σ : Jp : S1K, . . . , Jp : SnK
Ξ � p[σ] : S1, . . . , Sn

Note this is equivalent to

Ξ � σ : Jp : S1 ∪ · · · ∪ SnK
Ξ � p[σ] : S1, . . . , Sn

but we prefer the former presentation, since it does not mention any
sort constructors. Likewise, we revise the rules for using variables,
so that they do not require any choices:

Ξ � K : Ξ(x) > J
Ξ � casex ofK : J

Ξ � V : Ξ(κ)

Ξ � κV : #

The rule for typing continuations is functionally equivalent to

Ψ ∈ Jp : S1 ∩ · · · ∩ SnK −→ Ξ,Ψ � ϕ(p) : J
Ξ � con(ϕ) : S1, . . . , Sn > J

but we prefer the following presentation, which exploits the dis-
tributivity of unions through intersections (here

V
is the n-ary form

of the context meet operation):

Ψ1 ∈ Jp : S1K, . . . ,Ψn ∈ Jp : SnK −→ Ξ,
V
i Ψi � ϕ(p) : J

Ξ � con(ϕ) : S1, . . . , Sn > J
Also note that since continuations are now defined using shallow
pattern-matching, the implication can be expanded into finitely
many premises. Finally, we check substitutions against a union of
refinement contexts, using the somewhat funny-looking:

`1 : h1 ∈ Ψ1, . . . , `n : hn ∈ Ψn −→
Ξ � ρ(x) :

V
i(`i : hi)(x) or (`i : hi = κ�: S and Ξ � ρ(κ)�: S)

Ξ � sub(ρ) : Ψ1, . . . ,Ψn

This rule quantifies over every way of selecting hypotheses x : S
or κ�: S from the different refinement contexts, and then requires
we show that the substitution satisfies the union of hypotheses for
some variable. For value variables x, this means we collect all of
the relevant facts x : S1, . . . , x : Sn, and show ρ(x) : S1, . . . , Sn.
For continuation variables κ, on the other hand, we must find a
particular hypothesis `i : hi = κ�: S and show ρ(κ)�: S.

The substitution-typing rule might be a bit difficult to digest. It
roughly resembles rules in the literature for subtyping in the pres-
ence of unions and products (Hosoya et al. 2000; Vouillon 2006).
We can also observe a loose duality with the rule for checking con-
tinuations, particularly that this rule exploits the distributivity of
intersections through unions.

5.2 Coinductive typing and sort annotations
Once we have the appropriate definition of refinement typing based
on shallow patterns, all that remains is to make the coinductive in-
terpretation of the typing rules effective via defunctionalization. To
decide whether Ξ � t : J , we execute the above rules in a bottom-
up manner, while also maintaining a growing list of assumptions
χ about metafunctions in t. For example, when checking a meta-
function ϕ against S1, . . . , Sn > J , we add ϕ : S1, . . . , Sn >
J as an assumption to χ, available when checking each of the
(finitely many) pattern branches ϕ(p). Using these assumptions re-
quires comparing defunctionalized metafunctions for equality—as
already mentioned, we do this syntactically.

Refinement typing of cut-free programs is completely auto-
matic, precisely because all of the rules in §5.1 respect the sub-
formula property and have finitely many premises. An implemen-
tation of this refinement typing procedure can be found in the Agda
code. For example, we can automatically verify the expected prop-
erties of the examples plus and app0 from §2.5, such as that app0



accepts sort dom∗ (but not domeven), and that plus takes a pair of
evens to an even and a pair of odds to an even, etc. Since the iden-
tity coercions are cut-free, we also immediately obtain a decision
procedure for subtyping, by the identity coercion interpretation.
For example, we can automatically verify that ¬veven ∩ ¬vodd ≤
¬v (even ∪ odd), and that ¬v (even ∩ odd) 6≤ ¬veven ∪ ¬vodd.

On the other hand, as we explained in §4.2, not every program
can be written in a cut-free way. For example, the most natural way
to write times is by cutting with plus. The refinement typing rules
for cuts do not have the subformula property:

Ξ � V : S Ξ � K : S > J
Ξ � K • V : J

Ξ,Ψ � t : J Ξ � σ : Ψ

Ξ � t[σ] : J
With sort annotations on these cuts, however, we can retain decid-
ability. The practical issues of programming with annotations are
outside the scope of this paper—for one, they must be contextual
annotations (Dunfield and Pfenning 2004). The reader can consult
the Agda code for a primitive implementation of contextual anno-
tations, which, for example, allows us to verify programs such as
times by placing the necessary annotations on plus.

6. Conclusions
We have derived a refinement type system with intersection and
union types, that is inherently safe in the presence of effects. This
type system is similar to earlier ones targeted at effectful call-by-
value languages, particularly by Dunfield and Pfenning (2004), al-
though we derive a stronger (while still sound) subtyping relation-
ship. However, our aim here was not to exhibit a particular artifact,
but rather to introduce a general, proof-theoretic methodology for
designing type systems robust to effects, based on principles of du-
ality.

We have moved systematically from a completely canonical,
infinitary sequent calculus with an intrinsic proofs-as-programs
interpretation, to an extrinsic refinement type system for these pro-
grams. Although this type system was undecidable, we could still
use it to explore important properties such as subtyping, via the
identity coercion and no-counterexamples interpretations. More-
over, we took the infinitary system as a starting point, from which
we obtained a decidable system through well-known program
transformation techniques. The only element that seemed to re-
quire a human oracle were the rules for shallow-pattern-based re-
finement typing in §5.1, but there too, perhaps further study will
reveal a more systematic connection to the original rules.
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