
Functors are Type Refinement Systems

Paul-André Melliès
CNRS, Université Paris Diderot

Sorbonne Paris Cité
mellies@pps.univ-paris-diderot.fr

Noam Zeilberger
MSR-Inria Joint Centre

noam.zeilberger@gmail.com

Abstract
The standard reading of type theory through the lens of
category theory is based on the idea of viewing a type system
as a category of well-typed terms. We propose a basic revision
of this reading: rather than interpreting type systems as
categories, we describe them as functors from a category of
typing derivations to a category of underlying terms. Then,
turning this around, we explain how in fact any functor gives
rise to a generalized type system, with an abstract notion of
typing judgment, typing derivations and typing rules. This
leads to a purely categorical reformulation of various natural
classes of type systems as natural classes of functors.

The main purpose of this paper is to describe the general
framework (which can also be seen as providing a categorical
analysis of refinement types), and to present a few applications.
As a larger case study, we revisit Reynolds’ paper on “The
Meaning of Types” (2000), showing how the paper’s main
results may be reconstructed along these lines.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]

Keywords type theory; category theory; refinement types

1. Introduction
One basic difficulty with type theory as a mathematical
“theory” is that in practice, the word “type” actually covers
two very different usages:

1. Sometimes, like the syntactician’s parts of speech, types
serve to define the basic grammar of well-formed expres-
sions; in this usage, all expressions carry a type, and there
is no need (or even sense) to consider the meaning of
“untyped” expressions.

2. Other times, like the semanticist’s predicates, types serve
as a way of identifying subsets of expressions with cer-
tain desirable properties; in this usage, every expression
carries an independent meaning, and typing judgments
serve to assert some property of that meaning.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676970

These two different uses of types are often associated respec-
tively with Alonzo Church and Haskell Curry (hence “types
à la Church” and “types à la Curry”), while John Reynolds
referred to these as the intrinsic and the extrinsic views of
typing in his book, Theories of Programming Languages [30].

Traditionally, readings of type theory through the lens
of category theory have sided towards the intrinsic (“à la
Church”) view. This is natural given the analogy

type system ∼ category

which observes for example that a well-typed term

x1 : A1, . . . , xn : An ` e : B

of the simply-typed lambda calculus may be interpreted as a
morphism

A1 × · · · × An
e // B

in a cartesian-closed category [17]. This favors the intrinsic
interpretation, since any morphism of a category

A
f // B

is intrinsically associated with a pair of types, namely, its
domain dom(f) = A and codomain cod(f) = B.

On the other hand, there are type-theoretic situations
where such an interpretation is plainly problematic. For
example, type systems including a notion of intersection or
subtyping

Γ ` e : B Γ ` e : C
Γ ` e : B ∩ C

Γ ` e : B B ≤ C
Γ ` e : C

involve making multiple judgments about the same expres-
sion, but in a category, it is not even grammatical to write the
same morphism between a different pair of objects1

*
A

f // B
A

f // C

What Reynolds originally observed [29, 30] is that an intrinsic
semantics for such a type system must really interpret typing
derivations rather than terms. This leads to questions of
coherence (i.e., whether two derivations of the same typing
judgment have the same meaning), and in later work [31],
Reynolds gave a particularly elegant proof of coherence, as a
corollary to a pair of more general results (a logical relations
theorem and a “bracketing” theorem) relating an intrinsic
semantics of typing derivations to an extrinsic semantics
defined directly on untyped terms.

1 Here and below we adopt the linguist’s practice of writing an
asterisk to the left of an expression which is ungrammatical (with
respect to some linguistic conventions made clear from context).

Conceptually, Reynolds’ intrinsic semantics may be for-
mulated as a functor

~−�D : Derivations→Meanings

from a category of typing derivations to some semantic cate-
gory of meanings, while his extrinsic semantics may be seen
as a functor

~−�T : Terms→Meanings
from a category of untyped terms to the same category of
meanings. On the other hand, albeit somewhat hidden in
Reynolds’ original analysis, implicitly there is also a “forget-
ful” functor

U : Derivations→ Terms
from typing derivations to terms, since every typing deriva-
tion is about some underlying term. The logical relations and
bracketing theorems can then be phrased as describing rela-
tionships among these three functors.

Our starting point here will be the observation that this
analysis may be turned around: in fact, any functor

U : D→ T

may be alternatively viewed as a “type system” in a gener-
alized sense, if we interpret the (arbitrary) category D as a
category of typing derivations and the (arbitrary) category T
as a category of terms. This will lead us to a purely categori-
cal way of speaking about typing derivations and terms—but
also conversely to a purely type-theoretic way of speaking
about functors.

In some ways, this very abstract view goes back to ideas
developed after Grothendieck, in particular by Jean Bén-
abou, who promoted the idea that any functor may be
seen as a “generalized fibration” [2] (we will describe how
Grothendieck fibrations themselves can be expressed quite
naturally in type-theoretic terms, as type systems with “in-
verse image types”). Our approach is also closely related
to—and partly inspired by—the concept of refinement in type
theory, viewing U as the functor which forgets refinement in-
formation. In the paper, we will adopt some of the language
typically used to speak about refinement type systems [27] in
order to speak about general functors—in effect providing a
simple and natural categorical semantics of refinement types.

2. Reading a functor as a refinement system
For completeness and in order to fix notations, we begin by
recalling the formal definitions of category and functor.

Definition 1. A category consists of:

• A collection of objects (A,B, . . .).
• A collection of morphisms (f , g, . . .), together with opera-

tions dom and cod assigning to each morphism a unique
source and target. We write f : A → B to indicate that
dom(f) = A and cod(f) = B.
• Composition and identity: for any pair of morphisms

f : A → B and g : B → C, a morphism (f ; g) : A → C,
as well as for every object A, a morphism idA : A → A
(we often omit the subscript on id when it can be deduced
from context).
• Such that associativity and unit laws hold:

(f ; g); h = f ; (g; h)
f ; id = f = id; f

Definition 2. Let D and T be categories. We say that U is a
functor fromD to T when it determines the following:

• for each object S ofD, an object U(S) of T , and
• for each morphism α : S → T of D, a morphism U(α) :

U(S)→ U(T) of T ,
• such that composition and identity are preserved:

U(α; β) = (U(α); U(β))
U(idS) = idU(S)

�

Now, for the remainder of the section we will assume a fixed,
arbitrary functor U : D → T , and consider various notions
relative to U.

Definition 3. We say that an object S ∈ D refines an object
A ∈ T if U(S) = A.

Definition 4. A typing judgment is a triple (S, f ,T) such that
S and T refine the domain and codomain of f , respectively,
i.e., such that f : A → B, U(S) = A and U(T) = B, for some
arbitrary A and B. In the special case where f = id (implying
that U(S) = U(T)), we also call this a subtyping judgment.

Definition 5. A derivation of a typing judgment (S, f ,T) is a
morphism α : S→ T inD such that U(α) = f . �

We emphasize again that these definitions are all parameter-
ized by a fixed functor U, and in some situations to be com-
pletely explicit we could speak of U-refinement, U-typing
judgments, and so on. In fig. 1, we give a graphical illustra-
tion of the definitions relative to a few miniature examples.

Along with these definitions, we introduce some notation
(also appearing in fig. 1) and conventions inspired from logic
and proof theory:

1. We write S @ A to indicate that S refines A (i.e., U(S) = A).
In general, we refer to objects of T as types, to objects of
D as refinement types, and to morphisms of T as terms.

2. We write
S =⇒

f
T

to indicate that (S, f ,T) is a typing judgment in the sense
of Defn. 4 (i.e., U(S) = dom(f) and U(T) = cod(f)), and

U ≤ V

to indicate that (U, id,V) is a subtyping judgment (i.e.,
U(U) = U(V)). Since subtyping is just a special case of
typing, the two judgments

U ≤ V and U =⇒
id

V

have precisely the same meaning.

3. We write
α

S =⇒
f

T

to indicate that α is a derivation of the typing judgment
(S, f ,T) in the sense of Defn. 5 (i.e.,α : S→ T and U(α) = f).
We also write

` S =⇒
f

T

to simply indicate that such a derivation exists (without
naming it), or

0 S =⇒
f

T

to indicate the absence of such a derivation, in which
case we say that the typing judgment is valid or invalid,
respectively.

S T
U

A B C

S,T @ A
U @ C

(a) Type refinement

S
T U

A B C

V

f

S =⇒
f

T U ≤ V

(b) Typing and subtyping judgments

S
T U

A B C

V

f

α β

α
S =⇒

f
T

β
U ≤ V

(c) Derivations of typing and subtyping judgments

Figure 1: An illustration of various type-theoretic concepts
associated to a functor.

4. More generally, we say that a typing rule

S1 =⇒
f1

T1 . . . Sn =⇒
fn

Tn

S =⇒
f

T

is valid if, given derivations of the premises, we can con-
struct a derivation of the conclusion. We will sometimes
give an explicit name to a typing rule (as a way of refer-
ring to the corresponding construction on derivations), by
placing it to the right of the horizontal bar. For example,
any derivation can be treated as a valid typing rule with
no premises:

α
S =⇒

f
T ⇐⇒ S =⇒

f
T
α

Proposition 6. The following typing rules are always valid:

S =⇒
f

T T =⇒
g

U

S =⇒
f ;g

U
;

S =⇒
id

S id

Proof. These are immediate consequences of the functoriality
of U. For example, suppose α is a derivation of (S, f ,T) and
β is a derivation of (T, g,U). By definition, this means that
α : S → T and U(α) = f , and β : T → U and U(β) = g. But

then (α; β) is a derivation of (S, (f ; g),U), since (α; β) : S → U
and U(α; β) = (U(α); U(β)) = (f ; g). �

Proposition 7. Subtyping is reflexive and transitive, and admits
rules of covariant and contravariant subsumption:

S ≤ S
S ≤ T T ≤ U

S ≤ U

S =⇒
f

T T ≤ U

S =⇒
f

U

S ≤ T T =⇒
g

U

S =⇒
g

U

Proof. Reflexivity of subtyping is by definition just another
way of writing the id typing rule of Prop. 6, while transitivity
and subsumption are all special cases of “;” with one or both
of the terms (i.e., morphisms of T) f and g set to the identity
term id. �

As the proof of Prop. 7 illustrates, sometimes constructing a
typing derivation involves reasoning about equality of terms
(i.e., morphisms ofT). In general, we allow ourselves to work
modulo this equality, but for clarity it is sometimes useful to
make the move between equal terms explicit by indicating a
conversion step:

S =⇒
f

T

S =⇒
g

T
∼

For example, the covariant subsumption rule of Prop. 7 can
be more explicitly derived as follows:

S =⇒
f

T T ≤ U

S =⇒
f ;id

U
;

S =⇒
f

U
∼

Finally, we should mention that the categorical axioms also
imply various equations on typing derivations. For example,
the associativity axioms imply that the derivation named by

α
S =⇒

f
T

β
T =⇒

g
U

S =⇒
f ;g

U
; γ

U =⇒
h

V

S =⇒
(f ;g);h

V
;

is equal to the derivation named by

α
S =⇒

f
T

β
T =⇒

g
U

γ
U =⇒

h
V

T =⇒
g;h

V
;

S =⇒
f ;(g;h)

V
;

while the unit laws imply that

α
S =⇒

f
T

β
T =⇒

g
U

S =⇒
f ;g

U
;

U =⇒
id

U id

S =⇒
(f ;g);id

U
;

=

α
S =⇒

f
T

β
T =⇒

g
U

S =⇒
f ;g

U
;

T =⇒
id

T id

β
T =⇒

g
U

γ
U =⇒

h
V

T =⇒
g;h

V
;

T =⇒
id;(g;h)

V
;

=

β
T =⇒

g
U

γ
U =⇒

h
V

T =⇒
g;h

V
;

These various simple observations motivate our adopting the
following definition:

Definition 8. A refinement system is a functor U : D→ T .

Example 1. To try to provide a bit of intuition for this
way of reading functors, we will consider a simple and
naive example, which is indeed perhaps the “folk model”
of refinement types. For T we take the category Set of sets
and functions, while for D we take the category SubSet of
subsets and image inclusions. An object of SubSet is a pair (A,S)
of a set A and a subset of that set S ⊆ A, while a morphism

(A,S)→ (B,T)

is a function between the underlying sets

f : A→ B

such that the image of the first subset is included in the second

∀a.a ∈ S⇒ f (a) ∈ T

As the functor U : SubSet→ Set we take the first projection,
sending a subset to its underlying set.

Putting aside formal questions of what exactly “sets” are
(e.g., whether axiomatized by ZFC, etc.), by most interpreta-
tions, the category Set is already quite rich with types. For
example we can probably suppose it contains types of natural
numbers, integers, sequences of integers,

N,Z,ZN

and many more besides. But if one could attribute a “philos-
ophy” to type refinement, it is that rather than trying to say
everything at once in the language of types, it is sometimes
better to start from a rough statement, and then explore ways
of making it more precise while keeping the original statement.
So, for instance, we might consider the refinement types of
odd, even, or prime natural numbers,2

odd def
= {n | ∃k.n = 2k + 1 } @N

even def
= {n | ∃k.n = 2k } @N

prime def
= {n | n > 1 ∧ ∀k.(k > 1 ∧ k | n)⇒ k = n } @N

of non-zero or non-negative integers,

nonzero def
= { x | x , 0 } @ Z

nonneg def
= { x | x ≥ 0 } @ Z

of linear or bounded sequences,

linear def
= { f | ∃a, b∀n. f (n) = a · n + b } @ ZN

bounded def
= { f | ∃x∀n. f (n) ≤ x } @ ZN

and so on. The point of the functor U : SubSet→ Set is that
these refinement types (in SubSet) will always be considered
with respect to the original types (in Set) they refine.

For example, the question whether “every prime number
is odd” may be sensibly posed as a subtyping problem,

prime ≤ odd

whose answer happens to be negative (i.e., the judgment is
invalid). On the other hand, the question of whether “every
linear sequence is odd” is not really sensible without resort to
some encoding, and the corresponding subtyping judgment

* linear ≤ odd

2 Here we allow ourselves the slight abuse of writing S @ A, although
strictly speaking the pair (A,S) is the object of SubSet.

is not well-formed, since the two sides refine different types.
As another example, if we take

λx.x2 : Z→ Z

to be the squaring function on the integers, then the following
three typing judgments are respectively valid, invalid, and
ill-formed:

` nonzero =⇒
λx.x2

nonneg

0 nonneg =⇒
λx.x2

nonzero

* nonneg =⇒
λx.x2

bounded

3. Monoidal and logical refinement systems
In the previous section, we described how an arbitrary functor
gives rise to a “refinement system”, in the sense of an abstract
notion of typing judgment, typing rules, etc. Of course, if all
we could say were restricted to such generalities, then we
could not say very much. But we have several strategies for
carving out richer classes of refinement systems U : D→ T :

1. By asking for additional structure onD and T , and that it
is preserved by U.

2. By asking for additional properties of U (like for instance
that it is a fibration).

3. By considering specific (refinement) type signatures, un-
der assumption of some existing structure and properties.

In this section we will pursue the first strategy (the others will
be considered later on). We begin by recalling the standard
definition of a monoidal category:

Definition 9. A monoidal structure on a categoryD consists
of a functor (called the tensor product)

− • − : D×D→ D

together with an object I ∈ D, satisfying associativity and
unity axioms up to natural isomorphism,

(A • B) • C ≡ A • (B • C) A • I ≡ A ≡ I • A

Moreover, these natural isomorphisms have to satisfy certain
“coherence laws” which we omit here (see [21]). A monoidal
category is a category equipped with a monoidal structure. �

There are many examples of monoidal categories, and often
the tensor product satisfies additional properties, such as
being symmetric or cartesian [21]. However, here we just want
to start from the most basic situation.

Definition 10. A monoidal refinement system is a functor
U : D → T between monoidal categories, preserving the
monoidal structure in the strict sense that we have a pair of
commutative squares:

D×D

U×U

��

•D // D

U

��
T × T

•T

// T

1
ID // D

U

��
1

IT
// T

�

To read these conditions in type-theoretic language, we first
allow ourselves to introduce another natural convention: we
say that a refinement rule

S1 @ A1 . . . Sn @ An

S @ A

is valid if U(S1) = A1, . . . ,U(Sn) = An implies that U(S) = A.
Then the commutative squares of defn. 10 translate straight-
forwardly to the following proposition (we omit subscripts
on the monoidal operations, since they are always clear from
context).

Proposition 11. In any monoidal refinement system, the following
refinement rules and typing rules are valid:

S1 @ A1 S2 @ A2

S1 • S2 @ A1 • A2 I @ I

S1 =⇒
f1

T1 S2 =⇒
f2

T2

S1 • S2 =⇒
f1• f2

T1 • T2
•

I =⇒
I

I I

Likewise, the axioms of monoidal categories translate to var-
ious equations on derivations constructed using the typing
rules. We elide these here, and instead move on to consid-
ering what we call logical refinement systems. First we recall
more standard material on category theory.

Definition 12. Let A and C be two objects of a monoidal
category. A left residual of C by A is an object B′ equipped
with a left-evaluation map

A • B′
S // C

and a transformation λ[−] from maps

A • B
f // C (1)

(where B is any object) to maps

B
λ[f] // B′ (2)

called left-currying, such that for any f : A • B → C and
g : B→ B′ we have equations

((id • λ[f]);S) = f g = λ[(id • g);S]

These equations ensure that there is a one-to-one correspon-
dence between maps of the form (1) and maps of the form (2).
Similarly, for any two objects B and C, a right residual of C
by B is an object A′ equipped with a right-evaluation map

A′ • B
R // C

and a transformation ρ[−] from maps

A • B
f // C

(where A is any object) to maps

A
ρ[f] // A′

called right-currying, such that for any f : A • B → C and
g : A→ A′ we have

((ρ[f] • id);R) = f g = ρ[(g • id);R]

Proposition 13. Residuation is determined up to isomorphism,
i.e., if B and B′ are two left residuals of C by A, then B � B′, and if
A and A′ are two right residuals of C by B, then A � A′.

Because of this proposition, we allow ourselves to speak of
the left residual of C by A whenever it exists, writing A \ C to
denote it—and similarly C / B for the right residual.

Definition 14. A logical refinement system is a monoidal
refinement system U : D→ T which preserves left and right
residuals. �

It is worth mentioning that the definition of a logical refine-
ment system in our sense does not require that all left and

S @ A U @ C
S \U @ A \ C S • S \U =⇒

S
U
S

S • T =⇒
f

U

T =⇒
λ[f]

S \U λ

S =⇒
id

S
id

β
S • T =⇒

f
U

T =⇒
λ[f]

S \U
λ

S • T =⇒
id•λ[f]

S • S \U
•

S • S \U =⇒
S

U
S

S • T =⇒
(id•λ[f]);S

U
;

=
β

S • T =⇒
f

U

η
T =⇒

g
S \U =

S ≤ S
id

η
T =⇒

g
S \U

S • T =⇒
id•g

S • S \U
•

S • S \U =⇒
S

U
S

S • T =⇒
(id•g);S

U
;

T =⇒
λ[(id•g);S]

S \U
λ

Figure 2: The defining rules of a logical refinement system
(restricted to the rules involving left residuals).

right residuals exist in D and T (i.e., that the categories are
closed), but only that U preserves any which exist inD.

In fig. 2, we illustrate how defn. 14 (limited to the part
involving left residuals) may be equivalently formulated in
the language of type theory, using the appropriate refinement
rules, typing rules, and equations. These rules are actually
quite standard in the literature on refinement types (see, for
example, the system of “simple sorts” described by Pfenning
[27, §6]), except for our use of the notation of the Lambek
calculus [16] (justified by the fact that we are working in a
general monoidal rather than a cartesian setting). Perhaps
one rule from fig. 2 that bears emphasizing is the refinement
rule:

S @ A U @ C
S \U @ A \ C

Under the conventions we have established, the rule simply
restates the condition that the functor U preserves left residu-
als. In particular, the refinement rule should not be confused
with the familiar rule of subtyping for function types, which
mixes contravariance in the domain with covariance in the
codomain:

Proposition 15. The following subtyping rules are valid in any
logical refinement system, if the corresponding residuals exist:

S2 ≤ S1 U1 ≤ U2

S1 \U1 ≤ S2 \U2

U1 ≤ U2 T2 ≤ T1

U1 / T1 ≤ U2 / T2

Proof. We can derive the rule for left residuals as follows (the
case of right residuals is symmetric):

S2 ≤ S1 S1 \U1 ≤ S1 \U1
id

S2 • S1 \U1 ≤ S1 • S1 \U1
•

S1 • S1 \U1 =⇒
S

U1
S

S2 • S1 \U1 =⇒
S

U1
;

U1 ≤ U2

S2 • S1 \U1 =⇒
S

U2
;

S1 \U1 =⇒
λ[S]

S2 \U2
λ

S1 \U1 ≤ S2 \U2
∼

�

Example 2. The refinement system SubSet→ Set considered
in Section 2 extends to a logical refinement system. The
monoidal structure on Set is the usual cartesian structure,

A • B def
= A × B I def

= 1

which also lifts to a (cartesian) monoidal structure on SubSet:

(S @ A) • (T @ B) def
= { (a, b) | a ∈ S, b ∈ T } @ A × B

(I @ I) def
= { ∗ } @ 1

Both categories are also closed, with left and right residuals
both defined in terms of the function space (we describe only
the underlying sets/subsets, not evaluation and currying):

A \ C def
= CA C / B def

= CB

(S @ A) \ (U @ C) def
= { f | ∀a.a ∈ S⇒ f (a) ∈ U } @ CA

(U @ C) / (T @ B) def
= { f | ∀b.b ∈ T⇒ f (b) ∈ U } @ CB

The forgetful functor SubSet→ Set evidently sends products
and residuals in SubSet to products and residuals in Set, and
thus defines a logical refinement system.

As an example, writing + : N •N → N for addition of
natural numbers, we can state various easy arithmetic facts
and non-facts as valid and invalid judgments:

` odd =⇒
λ[+]

odd \ even

` odd =⇒
λ[+]

even \ odd

0 even =⇒
λ[+]

prime \ odd

4. Reading Grothendieck in translation
In this section we will pursue the second strategy mentioned
at the beginning of Section 3, and begin by recalling the
definition of when a functor U : D → T is a fibration à la
Grothendieck [13].

Definition 16. A morphism α : T′ → T in D is said to
be cartesian if for every object S ∈ D and every pair of
morphisms β : S → T and g : U(S) → U(T′) such that
U(β) = g; U(α), there is a unique morphism β′ : S → T′ such
that β = α; β′ and U(β′) = g.

Definition 17. Let f : A → B be a morphism in T , and T be
an object ofD such that U(T) = B. A morphism α inD is said
to be a cartesian lifting of f to T if U(α) = f , cod(α) = T, and
α is cartesian.

Definition 18. A functor U : D→ T is said to be a fibration
if for every morphism f : A→ B in T and object T ∈ D such
that U(T) = B, f has a cartesian lifting to T.

The definition of fibration plays a fundamental role in cate-
gory theory as well as in the semantics of dependent types,
and we may thus wonder whether we can understand it from
our point of view on refinement type systems. Again, we as-
sume U : D → T is fixed, with the notational and termino-
logical conventions of Section 2 (we do not assume any other
structure onD and T).

Definition 19. Let f : A → B and T @ B. A pullback (or
“inverse image”) of T along f is a refinement type T′ @ A
equipped with a pair of valid typing rules

T′ =⇒
f

T L

S =⇒
g; f

T

S =⇒
g

T′ R

such that for all derivations
β

S =⇒
g; f

T and
η

S =⇒
g

T′

we have a pair of equalities

β
S =⇒

g; f
T

S =⇒
g

T′ R T′ =⇒
f

T L

S =⇒
g; f

T
;

=
β

S =⇒
g; f

T

and

η
S =⇒

g
T′ =

η
S =⇒

g
T′ T′ =⇒

f
T L

S =⇒
g; f

T
;

S =⇒
g

T′ R

�

Now, it is essentially immediate by unwinding the definitions
that we have just redubbed Grothendieck to a type-theoretic
soundtrack:

Proposition 20. α : T′ → T is a cartesian lifting of f to T if
and only if the triple (T′,Lα,Rα) is a pullback of T along f , where
Lα = α, and where Rα is defined using the universal property of α.

Proposition 21. U is a fibration iff for every f : A → B and
T @ B, there exists a pullback of T along f .

Somewhat remarkably, many standard facts about fibrations
can be derived quite mechanically under this translation,
reminiscent of proofs in the sequent calculus. We begin
by showing in this proof-theoretic style that pullbacks are
determined up to vertical isomorphism.

Definition 22. Let S,T @ A be two refinements of a common
type. We say that S and T are vertically isomorphic (written
S ≡ T) when there exist a pair of subtyping derivations

α
S ≤ T

β
T ≤ S

which compose to the identity

α
S ≤ T

β
T ≤ S

S ≤ S
; =

S ≤ S id

β
T ≤ S

α
S ≤ T

T ≤ T
; =

T ≤ T id

Proposition 23. Any two pullbacks of T along f are vertically
isomorphic.

Proof. Let T′ and T′′ both be pullbacks of T along f , equipped
with corresponding valid typing rules

T′ =⇒
f

T LT′
S =⇒

g; f
T

S =⇒
g

T′ RT′

and

T′′ =⇒
f

T LT′′
S =⇒

g; f
T

S =⇒
g

T′′ RT′′

Then we can build derivations of T′ ≤ T′′ and T′′ ≤ T′ by

T′ =⇒
f

T LT′

T′ ≤ T′′ RT′′
T′′ =⇒

f
T LT′′

T′′ ≤ T′ RT′

f : A→ B T @ B
f ∗ T @ A f ∗ T =⇒

f
T

L f ∗
S =⇒

g; f
T

S =⇒
g

f ∗ T
R f ∗

β

S =⇒
g; f

T

S =⇒
g

f ∗ T
R f ∗

f ∗ T =⇒
f

T
L f ∗

S =⇒
g; f

T
;

=
β

S =⇒
g; f

T
η

S =⇒
g

f ∗ T =

η

S =⇒
g

f ∗ T f ∗ T =⇒
f

T
L f ∗

S =⇒
g; f

T
;

S =⇒
g

f ∗ T
R f ∗

Figure 3: The defining rules of pullback refinements.

and easily verify from the axioms that these two derivations
compose to the identity. �

Because pullbacks are determined up to vertical isomor-
phism, we allow ourselves to speak of the pullback of T along
f whenever one exists, writing f ∗ T for the refinement type
and L f ∗ and R f ∗ for the corresponding rules (see fig. 3).

We can now mechanically establish the following facts
about pullbacks, which, in categorical jargon, go into showing
that any fibration determines a pseudofunctor T op

→ Cat:

Proposition 24. Whenever the corresponding pullbacks exist:

1. the following subtyping rule is valid:

T1 ≤ T2

f ∗ T1 ≤ f ∗ T2

2. we have vertical isomorphisms

(g; f)∗ T ≡ g∗ f ∗ T id∗ T ≡ T

Proof. 1.

f ∗ T1 =⇒
f

T1
L f ∗

T1 ≤ T2

f ∗ T1 =⇒
f ;id

T2
;

f ∗ T1 =⇒
id; f

T2
∼

f ∗ T1 ≤ f ∗ T2
R f ∗

2. For the left equation, we construct subtyping derivations
in both directions by

(g; f)∗ T =⇒
g; f

T
L(g; f)∗

(g; f)∗ T =⇒
g

f ∗ T
R f ∗

(g; f)∗ T ≤ g∗ f ∗ T
Rg∗

g∗ f ∗ T =⇒
g

f ∗ T
Lg∗

f ∗ T =⇒
f

T
L f ∗

g∗ f ∗ T =⇒
g; f

T
;

g∗ f ∗ T ≤ (g; f)∗ T
R(g; f)∗

and again by an easy calculation, we can show that
these two derivations compose to the identity. The right
equation id∗ T ≡ T is essentially immediate (which also
means that pullbacks along the identity always exist).

�

Next, we give an analogous reconstruction of the dual concept
of an opfibration.

Definition 25. Let S @ A and f : A→ B. A pushforward (or
“image”) of S along f is a refinement type S′ @ B equipped
with a pair of valid typing rules

S =⇒
f ;g

T

S′ =⇒
g

T L S =⇒
f

S′ R

S @ A f : A→ B
f S @ B

S =⇒
f ;g

T

f S =⇒
g

T
L f

S =⇒
f

f S
R f

S =⇒
f

f S
R f

β

S =⇒
f ;g

T

f S =⇒
g

T
L f

S =⇒
f ;g

T
;

=
β

S =⇒
f ;g

T
η

f S =⇒
g

T =

S =⇒
f

f S
R f η

f S =⇒
g

T

S =⇒
f ;g

T
;

f S =⇒
g

T
L f

Figure 4: The defining rules of pushforward refinements.

such that for all derivations
β

S =⇒
f ;g

T and
η

S′ =⇒
g

T

we have equalities

S =⇒
f

S′ R

β
S =⇒

f ;g
T

S′ =⇒
g

T L

S =⇒
f ;g

T
;

=
β

S =⇒
f ;g

T

and

η
S′ =⇒

g
T =

S =⇒
f

S′ R η
S′ =⇒

g
T

S =⇒
f ;g

T
;

S′ =⇒
g

T L

Proposition 26. U is a Grothendieck opfibration iff for every S @ A
and f : A→ B, there exists a pushforward of S along f .

Since pushforwards are determined up to vertical isomor-
phism, we speak of the pushforward of S along f , writing f S
for the refinement type and L f and R f for the corresponding
rules (see fig. 4). Again, we can mechanically establish some
basic facts about pushforwards (which go into showing that
any opfibration determines a pseudofunctor T → Cat):

Proposition 27. Whenever the corresponding pushforwards exist:

1. the following subtyping rule is valid:

S1 ≤ S2

f S1 ≤ f S2

2. we have vertical isomorphisms

(f ; g) S ≡ g f S id S ≡ S

Proposition 28. Whenever the respective pushforwards and pull-
backs exist, we have a three-way correspondence of interderivability,

` f S ≤ T iff ` S =⇒
f

T iff ` S ≤ f ∗ T

Example 3. For the refinement system SubSet→ Set, push-
forward and pullback refinements may be constructed as sug-
gested by the notation, via image and inverse image opera-
tions on subsets (along any function f : A→ B):

f S def
= { f (a) | a ∈ S }

f ∗ T def
= { a | f (a) ∈ T }

For example, the typing judgment

f ∗ T =⇒
f

T

is obviously valid, reading as « f maps anything in the inverse
image of T along f to something in T », while

S =⇒
f

f S

reads as « f maps anything in S to something in the image
of S along f ». Since these operations are defined for any
f : A → B, S @ A, and T @ B, the functor SubSet → Set is
both a fibration and an opfibration, i.e., a bifibration.

Example 4. The general approach of Hoare logic [12] pro-
vides a natural class of examples of refinement systems, to
a first approximation defined as follows (we will consider a
more nuanced view in Section 5):
• Take T as a category with one object W corresponding

to the state space, and with morphisms c : W → W
corresponding to program commands, identified with
state transformers.
• TakeD as a category whose objects are predicates φ over

states, and whose morphisms φ → ψ are pairs of a state
transformer c together with a verification that c takes any
state satisfying φ to a state satisfying ψ.
• Let U : D → T be the evident forgetful functor, mapping

every φ to W and every verification about c to c itself.

Indeed, the induced notion of typing judgment for the functor
U : D → T corresponds exactly to the classical notion
of Hoare triple {φ}c{ψ}. One easily checks that the usual
rules of sequential composition, pre-strengthening and post-
weakening are valid by Propositions 6 and 7, and moreover
that a pullback of ψ along c is precisely a weakest precondition,
while a pushforward of φ along c is a strongest postcondition:

wp(c, ψ) = c∗ ψ
sp(c, φ) = cφ

On the other hand, it is not necessarily the case that D → T
is a fibration and/or opfibration: whether weakest precon-
ditions/strongest postconditions exist for all predicates and
state transformers depends on the specifics of the class of
predicates and the class of state transformers.

Example 5. The example of SubSet→ Set can be generalized
in terms of enriched category theory [15]. Let (V,⊗V, IV,(V)
be a symmetric monoidal closed category, let VCat be the
(bi)category ofV-enriched categories, and letVPsh the cat-
egory of V-presheaves, i.e., the category whose objects are
V-valued functors S : A → V out of V-enriched categories,
and where a morphism from S : A → V to T : B → V is
a pair of a (V-)functor f : A → B together with a natural
transformation α : S ⇒ (f ; T). Then the refinement system
given by the domain functor dom : VPsh → VCat is a bi-
fibration, with pullbacks simply defined by precomposition,
and pushforwards computed as coends:

f ∗ T def
= a 7→ T(f a)

f S def
= b 7→

∫ a

B(f a, b) ⊗V T(a)

Note that this is also an example of a logical refinement
system—the (symmetric) closed monoidal structure onVCat
is defined by constructing tensor product categories and
functor categories

A • B def
= A ⊗ B A \ C def

= [A,C] C / B def
= [B,C]

while the tensor product of two presheaves is defined as their
external tensor product,

S • T : A ⊗ B→V

S • T def
= (a, b) 7→ S(a) ⊗V T(b)

and the left and right residuals defined as ends:

S \U : [A,C]→V

S \U def
= f 7→

∫
a

S(a)(V U(f a)

U / T : [B,C]→V

U / T def
= g 7→

∫
b

T(b)(V U(gb)

Example 6. A trivial example of a bifibration is the unique
functor ! : D → 1 from any category D to the terminal
category 1. Since there is only the identity arrow in 1, all
pushforwards and pullbacks exist trivially. (IfD is monoidal,
this is also trivially a logical refinement system.) �

5. Separation Logic and the Frame Rule
We have seen how a lot of general type theory can be recon-
structed as a “theory of functors”. In many ways, though,
the really interesting phenomena arise by taking the various
type constructors as building blocks, and using them to define
specific type signatures. Effectively, this is a way of viewing re-
finement systems as a “logical framework”, using them both
to define theories and to construct models. In this section we
will give some basic examples, describing how some aspects
of Reynolds and O’Hearn’s separation logic [32] can be usefully
explained in terms of refinement systems.

Recall (Example 4) that Hoare logic may be considered
as a refinement system where terms c : W → W ∈ T are
commands (state-transformers), refinements φ,ψ @ W are
predicates over the state space, and where derivations

α
φ =⇒

c
ψ

are proofs that the command c will take any state satisfying
φ to a state satisfying ψ. Although this description suggests
that T is a one-object category, such a restriction is not really
necessary, and it turns out to be useful to work more generally.

In particular, suppose we know that T is a monoidal
category and that W is a monoid object in T , i.e., that it is
equipped with operations

~ : W •W →W
e : 1→W

satisfying the monoid axioms. Then for any pair of refine-
ments φ,ψ @ W, we can define their separating conjunction
φ ∗ ψ @W as a pushforward (along ~) of a tensor product:

φ ∗ ψ
def
= ~ (φ • ψ)

We similarly define the unit of the separating conjunction
emp @W as a pushforward (along e) of the tensor unit:

emp def
= e I

Finally, for any φ, τ @W we define “magic wand” φ−∗τ @W
as a pullback (along the currying of ~) of a residual:3

φ −∗ τ
def
= λ[~]∗ (φ \ τ)

3 Incidentally, these kinds of definitions—where in order to define
some logical structure of interest we rely on a similar structure in the

Now, interpreting this signature in the refinement system
SubSet→ Set (Examples 1 to 3) yields the basic set-theoretic
semantics of the separation logic connectives:

φ ∗ ψ = {w1 ~w2 | w1 ∈ φ,w2 ∈ ψ }

emp = { e }
φ −∗ τ = {w | ∀w′. w′ ∈ φ⇒ w′ ~w ∈ τ }

On the other hand, we can see that the abstract definition
in terms of refinement systems is much more general. For
example, interpreting the signature in VPsh → VCat (Ex-
ample 5) recovers the well-known Day construction for lift-
ing a monoidal structure on a category to a closed monoidal
structure on its category of presheaves. The next proposition
describes the situation more abstractly.

Proposition 29. Whenever the operations φ ∗ − and φ −∗ − are
defined (i.e., when the corresponding pushforwards, pullbacks, and
residuals exist), they are functorial in the sense that subtyping rules

ψ1 ≤ ψ2

φ ∗ ψ1 ≤ φ ∗ ψ2

τ1 ≤ τ2

φ −∗ τ1 ≤ φ −∗ τ2

are valid, and adjoint in the sense that the subtyping rule

φ ∗ ψ ≤ τ

ψ ≤ φ −∗ τ

is both valid and invertible.

This proposition is actually independent of whether ~ and
e satisfy the monoid axioms, and can even be adapted for a
binary operation of arbitrary type ~ : A • B→ C.

The functoriality of φ ∗ − expressed in Prop. 29 is a trivial
instance of O’Hearn’s frame rule, which can be expressed as
follows for a general command c:

ψ1 =⇒
c
ψ2

φ ∗ ψ1 =⇒
c
φ ∗ ψ2

frame

There is no reason why the frame rule should be valid in an
arbitrary refinement system, and it is impossible to derive it
from the above axioms. On the other hand, in the presence of
pullbacks or pushforwards, it is not difficult to see that the
frame rule is equivalent to either one of two simple algebraic
conditions on the command c:

φ ∗ c∗ ψ ≤ c∗ (φ ∗ ψ) c (φ ∗ ψ) ≤ φ ∗ cψ

The correspondence between the frame rule and the left-hand
side property was noticed already by O’Hearn and Yang [24].
Here, we would like to emphasize that the left-hand side
property says that pullback along c, seen as an endofunctor

c∗ : DW →DW

on the fiber of W, is strong with respect to the action φ ∗ −
of the monoidal category DW on itself. This correspondence
connects the frame rule to the traditional description of
locality as a monadic strength in the semantics of effects.

6. Reconstructing “The Meaning of Types”
As we mentioned in the introduction, John Reynolds wrote
eloquently on the distinction between the “intrinsic” and “ex-
trinsic” views of typing (as he did on many topics), and con-
sidered the relationship between these two views carefully in

logical framework—are a recurring pattern, and an example of the
“microcosm principle” in the sense of Baez and Dolan. In Section 6.4
we will see this pattern again in the definition of the logical relation.

his paper on “The Meaning of Types” [31]. To conclude our
paper, we want to revisit Reynolds’ analysis, and describe
how much of it may be expressed quite naturally in the lan-
guage of refinement systems. The following Sections 6.1 to 6.5
track Sections 1–5 of [31].

6.1 Syntax and Typing Rules

We define a category T and a functor U : D → T , representing
the syntax and typing rules of a small language.

The language Reynolds considers in the paper is a simple
extension of the lambda calculus including primitive boolean
and arithmetic operations, records, recursion, and subtyping.
Since the language is meant to be illustrative rather than in-
teresting of itself, we will further simplify here by getting rid
of records, recursion, and a few of the primitive operations,
in order to focus on the treatment of subtyping. We will also
follow the LF approach [10] and use higher-order abstract
syntax (rather than explicit identifiers) to describe binding
operations, since this leads to an elegant analysis in terms of
cartesian logical refinement systems.

Definition 30. A cartesian logical refinement system is a
logical refinement system U : D→ T in which the monoidal
structures onD and T are cartesian [21]. We write X ×Y and
YX to denote cartesian products and exponentials.

The reason we must consider cartesian rather than arbitrary
logical refinement systems is that in Reynolds’ language
variables can be used any number of times and in any order.
Otherwise, though, whether one works with cartesian logical
refinement systems or in the general monoidal setting, the
structure of the analysis is essentially the same.

So, we begin by considering the category T of terms as
a cartesian category freely generated from a single type P of
phrases, a pair of morphisms

lam : PP
→ P

app : P→ PP

representing lambda and application, and morphisms

add, sub, lt : P × P→ P
not : P→ P

zero, one, true, false : 1→ P

representing the operations of addition, subtraction, compar-
ison, negation, and the numerical and boolean constants.

We next define a functor U : D → T , as a cartesian
logical refinement system freely generated from the following
refinement rules

int @ P nat @ P bool @ P
θ1 @ P θ2 @ P
fn[θ1, θ2] @ P

the following subtyping rules

nat ≤ int NI nat ≤ bool NB
θ′1 ≤ θ1 θ2 ≤ θ′2

fn[θ1, θ2] ≤ fn[θ′1, θ
′

2] Fn

a pair of typing rules for lambda and application

θ2
θ1 =⇒

lam
fn[θ1, θ2]

Lam
fn[θ1, θ2] =⇒

app
θ2

θ1
App

and a collection of typing rules for the primitive operations

nat × nat =⇒
add

nat N+ int × int =⇒
add

int I+ bool × bool =⇒
add

bool
B+

int × int =⇒
sub

int I− int × int =⇒
lt

bool
I<

bool =⇒
not

bool
B¬

1 =⇒
zero

nat N0
1 =⇒

one
nat N1 1 =⇒

true
bool

Bt
1 =⇒

false
bool

B f

We emphasize that this signature should be read as specifying
conditions on the categoryD and the functor U. For example,
the NI subtyping rule indicates that D contains a morphism
NI : nat→ int and that U maps NI to idP, while the App rule
says thatD contains a morphism App : fn[θ1, θ2]→ θ2

θ1 (for
every θ1, θ2 @ P) and that U maps App to app.

In the spirit of the LF approach (but now at the level of
refinements, cf. [20, 26]), there is a lot that we don’t have
to mention in this signature. For example, we don’t have
to explicitly include Reynolds’ subsumption rule, since it
is valid in any refinement system (Prop. 7). On the other
hand, observe that the Fn subtyping rule is not an instance of
Prop. 15, since a priori we do not identify fn[θ1, θ2] with the
exponential object θ2

θ1 (the former refines P, the latter PP).

Example 7. The function dec = lam(λ[(id • one); sub]) sub-
tracting one from an integer may be typed by the following
derivation (at the bottom we write ; Lam for the typing rule
defined by post-composing with Lam):

int =⇒
id

int id
1 =⇒

one
nat N1 nat ≤ int NI

1 =⇒
one

int
;

int =⇒
id•one

int × int
•

int × int =⇒
sub

int I−

int =⇒
(id•one);sub

int
;

1 =⇒
λ[(id•one);sub]

intint λ

1 =⇒
dec

fn[int, int]
; Lam

Example 8. It is possible to have more than one typing
derivation of the same typing judgment. For example, the
typing judgment

nat × nat =⇒
add

bool

may be derived either as

nat × nat =⇒
add

nat N+ nat ≤ bool
NB

nat × nat =⇒
add

bool
;

or as

nat ≤ bool
NB

nat ≤ bool
NB

nat × nat ≤ bool × bool
•

bool × bool =⇒
add

bool
B+

nat × nat =⇒
add

bool
;

6.2 An Intrinsic Semantics

We define a cartesian closed functor ~−�D : D → Dom from
derivations to domains.

In order to define the intrinsic semantics we assume
domains N⊥,Z⊥,B⊥ of naturals, integers, and booleans, as
well as operations

+N :N⊥×N⊥ →N⊥ +Z : Z⊥×Z⊥ → Z⊥ ∨B : B⊥×B⊥ → B⊥

−Z : Z⊥ ×Z⊥ → Z⊥ <Z: Z⊥ ×Z⊥ → B⊥ ¬B : B⊥ → B⊥
0, 1 : 1→N⊥ tt, ff : 1→ B⊥

standing for the componentwise-strict extensions of the evident
operations on naturals, integers, and booleans. We also write
i : N⊥ → Z⊥ for the evident inclusion, and j : N⊥ → B⊥ for
the strict extension of the following map:

n 7→
{

tt if n > 0
ff if n = 0

Then we define the functor ~−�D : D→ Dom by:

~nat� =N⊥ ~int� = Z⊥ ~bool� = B⊥
�

fn[S,T]
�

= ~T�~S�

~NI� = i ~NB� = j
�

Fn[α, β]
�

= (f 7→ ~α� ; f ;
�
β
�

)

~Lam� = id
�

App
�

= id

~N+� = +N ~I+� = +Z ~B+� = ∨B

~I−� = −Z ~I<� =<Z ~B¬� = ¬B

~N0� = 0 ~N1� = 1 ~Bt� = tt
�

B f
�

= ff

Note that this data suffices for defining the cartesian closed
functor ~−�D, by the requirement that it preserves cartesian
products and exponentials.

6.3 An Untyped Semantics

We define a cartesian closed functor ~−�T : T → Dom from terms
to domains.

In order to define the untyped semantics we assume a
domain U equipped with operations

Z⊥
Φp // U
Ψp

oo UU
Φf // U
Ψf

oo

such that Φp; Ψp = id and Φf; Ψf = id (i.e., embedding-
retraction pairs). We also suppose operations

ttZ : 1→ Z⊥ <Z: Z⊥ ×Z⊥ → Z⊥ ¬Z : Z⊥ → Z⊥
which must at minimum satisfy

ttZ > 0
(x <Z y) > 0 when x < y
(x <Z y) = 0 when x ≥ y

(¬Zx) > 0 when x = 0
(¬Zx) = 0 when x > 0

Then ~−�T is defined by:

~P� = U ~lam� = Φf
�

app
�

= Ψf

~add� = (Ψp •Ψp); +Z; Φp ~sub� = (Ψp •Ψp);−Z; Φp

~lt� = (Ψp •Ψp);<Z; Φp ~not� = (Ψp •Ψp);¬Z; Φp

~zero� =
�

false
�

= 0; i; Φp ~one� = 1; i; Φp ~true� = ttZ; Φp

As in Section 6.2, this data suffices for defining ~−�T as a
cartesian closed functor.

6.4 Logical Relations

We formalize Reynolds’ logical relations theorem, connecting the
intrinsic semantics to the untyped semantics.

The logical relations theorem boils down to defining a
cartesian closed functor ρ : D → DRel satisfying a pair of
commuting squares:

D
ρ //

(0)

DRel

∂0

��
D

~−�D

// Dom

D
ρ //

U

��
(1)

DRel

∂1

��
T

~−�T

// Dom

Here DRel is the category whose objects are chain-complete
relations over domains (hence domain-theoretic relations) and
whose morphisms are pairs of functions mapping related
arguments to related results, while the ∂i are the evident
projection functors. To define ρ, we take advantage of the fact
that the pairing of the projection functors (∂0, ∂1) : DRel →

Dom ×Dom has the structure of a logical refinement system
(with all pullbacks and some pushforwards)—so let us take
a moment to describe this structure (cf. [14, Example 3(2)]).

A refinement S @ (A,B) corresponds to a chain-complete
relation S ⊆ A × B between domains, while a derivation of

S =⇒
(f ,g)

T

corresponds to a proof that

∀a, b. a ∼S b⇒ f (a) ∼T g(b)

Products, residuals, pullbacks and pushforwards are defined
as follows on relations:

(a1, a2) ∼S×T (b1, b2) iff a1 ∼S b1 ∧ a2 ∼T b2

f ∼TS g iff ∀a, b. a ∼S b⇒ f (a) ∼T g(b)
a ∼(f ,g)∗ T b iff f (a) ∼T g(b)
c ∼(f ,g) S d iff ∃a, b. c = f (a) ∧ d = g(b) ∧ a ∼S b

Note that pushforward is a partial operation, because the
relation (f , g) S is not necessarily chain-complete. However,
the pushforward along a pair of functions (f , g) with flat
codomains (or more generally, with codomains where every
element is compact) is always defined.

Now, in order to satisfy the squares (0) and (1), the object
part of the functor ρ : D → DRel must assign to each θ @ P
a relation ρ[θ] @ (~θ� ,U). Let ∆ : Dom → DRel be the
(cartesian closed) functor assigning the identity relation to
any domain. We define ρ[θ] as follows (by induction on θ):

ρ[int] = (id,Ψp)∗ ∆[Z⊥]
ρ[nat] = (id,Ψp)∗ (id, i) ∆[N⊥]
ρ[bool] = (id,Ψp)∗ (id, i) (id, j)∗ ∆[B⊥]

ρ[fn[θ1, θ2]] = (id,Ψf)
∗ ρ[θ2]ρ[θ2]

By unwinding the interpretation of the logical refinement
system DRel → Dom × Dom, it is easy to check that these
definitions agree with Reynolds’ Definitions 4.1 and 4.2. For
example, we have

b ∼ρ[bool] p iff b ∼(id,i) (id, j)∗ ∆[B] Ψp(p)
iff ∃n.Ψp(p) = i(n) ∧ b ∼(id, j)∗ ∆[B] n
iff ∃n.Ψp(p) = i(n) ∧ b = j(n)

We can now prove that ρ extends to a functor and that the two
squares (0) and (1) commute, which modulo our treatment
of variables (using higher-order abstract syntax rather than
explicit environments) is an exact transcription of Reynolds’
Logical Relations Theorem (4.8).

Theorem 31. If
α

θ1 =⇒
p
θ2 then ` ρ[θ1] =⇒

(~α�,~p�)
ρ[θ2].

Proof. By induction on α. The content of the proof is basically
identical with the proof in [31], but the trip through refine-
ment systems gives the proof considerably more structure.
We illustrate with a few cases:

• α = NI:

∆[N⊥] =⇒
(i,i)

∆[Z⊥]
∆[i]

(id, i) ∆[N⊥] =⇒
(i,id)

∆[Z⊥]
L(id, i)

(id,Ψp)∗ (id, i) ∆[N⊥] =⇒
(i,id)

(id,Ψp)∗ ∆[Z⊥]
(fun)

ρ[nat] =⇒
(~NI�,~id�)

ρ[int]

where we write a double line for expansion of definitions,
(fun) for functoriality of pullbacks (Prop. 24), and ∆[i] for
the application of the functor ∆ to the map i :N⊥ → Z⊥.
• α = Lam:

ρ[θ2]ρ[θ1] =⇒
(id,id)

ρ[θ2]ρ[θ1] id

ρ[θ2]ρ[θ1] =⇒
(id,(Φf ;Ψf))

ρ[θ2]ρ[θ1]
∼

ρ[θ2]ρ[θ1] =⇒
(id,Φf)

(id,Ψf)
∗ ρ[θ2]ρ[θ1]

R(id,Ψf)
∗

ρ[θ2
θ1] =⇒

(~Lam�,~lam�)
ρ[fn[θ1, θ2]]

• α = N+:

∆[N⊥] • ∆[N⊥] =⇒
(+N ,+N)

∆[N⊥]
∆[+N]

∆[N⊥] =⇒
(id,i)

(id, i) ∆[N⊥]
R(id, i)

∆[N⊥] • ∆[N⊥] =⇒
(+N ,(+N ;i))

(id, i) ∆[N⊥]
;

∆[N⊥] × ∆[N⊥] =⇒
(+N ,(i•i;+Z))

(id, i) ∆[N⊥]
∼

ρ[nat] × ρ[nat] =⇒
(+N ,((Ψp•Ψp);+Z ;Φp))

ρ[nat]
(†)

ρ[nat × nat] =⇒
(~N+�,~add�)

ρ[nat]

where at (†) we have elided several easy steps of reason-
ing, and at ∼we use the fact that (+N; i) = (i • i; +Z).

�

6.5 Bracketing

We formalize Reynolds’ bracketing theorem, which combined with
the logical relations theorem yields coherence.

We begin by defining for each domain ~θ� in the image of
the intrinsic semantics a pair of functions

~θ�
φ[θ] // U
ψ[θ]
oo

which will turn out to be an embedding-retraction pair. The
family is defined as follows (by induction on θ):

φ[int] = Φp ψ[int] = Ψp φ[nat] = i; Φp ψ[nat] = Ψp; i′

φ[bool] = j′; i; Φp ψ[bool] = Ψp; i′; j

φ[fn[θ1, θ2]] = φ[θ2]ψ[θ1]; Φf ψ[fn[θ1, θ2]] = Ψf;ψ[θ2]φ[θ1]

Here g f def
= λ[f • id;S; g], while i′ : Z⊥ → N⊥ is the function

sending non-negative integers to naturals and everything else
to ⊥, and j′ : B⊥ → N⊥ is the strict extension of the function
sending tt to 1 and ff to 0. Note that this family of pairs may
be seen as a pair of transformations between functors

φ : ~−�D ⇒ (U; ~−�T) ψ : (U; ~−�T)⇒ ~−�D

albeit not a pair of natural transformations. Instead, φ and ψ
are related by Reynolds’ bracketing theorem.

Theorem 32 (Bracketing). The two judgments

∆~θ� =⇒
(id,φθ)

ρ[θ] =⇒
(id,ψθ)

∆~θ�

are derivable for all θ.

Proof. By induction on θ. Once again, the proof is highly
structured, and we include it in full in Appendix A. �

Finally, by combining the bracketing theorem with the logical
relations theorem, we can show that the intrinsic semantics

is coherent, i.e., that any two derivations of the same judg-
ment have the same interpretation (the following statements
correspond to Reynolds’ Theorem 5.7 and Corollary 5.8).

Corollary 33 (Coherence). We have:

1. If
α

θ1 =⇒
p
θ2 then ~α� = φθ1 ;

�
p
�

;ψθ2 .

2. If
α1

θ1 =⇒
p
θ2 and

α2
θ1 =⇒

p
θ2 then ~α1� = ~α2�.

7. Related work and conclusions
Refinement type systems are the higher-order version of
Hoare logic, and as such, they are recognized today as
a fundamental tool in program analysis and certification.
An important contribution to this line of research has been
the work by Frank Pfenning and his collaborators [9] who
have developed along the years a comprehensive theory of
refinement type systems, including a clean account of the
relationship between extrinsic and intrinsic typing [27]. Here,
by going back to Reynolds [31] we establish a very natural
connection between refinement type systems and functorial
semantics, based on the idea that every functor defines a
refinement type system.

Functorial semantics is an old idea going back to Lawvere
in algebra [18] and logic [19], and which plays a central
role in the study of imperative languages since Reynolds
and Oles [25, 28]. Functorial semantics has also played a
defining role in the early development of separation logic [23]
as well as in more recent extensions of the logic to higher-
order imperative languages [3, 4]. One distinctive feature of
the present work is to develop a formal language of typing
judgments and derivations reflecting the basic reasoning
principles of functorial semantics. This language has been
designed in order to be amenable to mechanization and
could eventually serve as an intermediate language in a proof
assistant. We demonstrated the power of the language in
Section 6, by recasting the sophisticated semantic arguments
used by Reynolds [31] in a concise and highly structured way.

One of the original motivations for this language was to
better understand effect type systems and their fibrational as-
pects, along the lines of [8, 14]. The idea of using product and
implication-preserving fibrations in the study of logical pred-
icates and logical relations may be traced back to Hermida
[11], with later developments by Katsumata. Investigating
effects and refinement type systems led us to replace fibra-
tions by general functors, and in particular to appreciate the
expressive power of closed functors. Together with the ex-
istence of specific pullbacks and pushforwards, one recovers
many of the operations of dependent types but in a more
flexible and general setting.

The principle of refining types while paying careful atten-
tion to the dual act of “forgetting” also appears in McBride’s
notion of ornament [22], which have been analyzed in fibra-
tional terms [1, 6]. We would like to clarify the connection
with our work in the future. Finally, the idea of using closed
functors as a logical framework (capable of speaking about
both “syntax” and “semantics” in a unified way) is very much
in the spirit of de Groote’s abstract categorial grammars [7], as
well as Carette, Kiselyov and Shan’s tagless interpreters [5].

References
[1] Robert Atkey, Patricia Johann, and Neil Ghani. Refining Induc-

tive Types. LMCS, 8:2, 2012.

[2] Jean Bénabou. Distributors at work. Notes from a course at TU
Darmstadt in June 2000, taken by Thomas Streicher.

[3] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-
Hyperdoctrines, Higher-order Separation Logic, and Abstrac-
tion. ACM Trans. Program. Lang. Syst., 5:29, 2007.

[4] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics
of Separation-Logic Typing and Higher-order Frame Rules for
Algol-like languages. LMCS, 5:2, 2006.

[5] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally
tagless, partially evaluated: Tagless staged interpreters for sim-
pler typed languages. JFP, 5:19, 2009.

[6] Pierre-Evariste Dagand and Conor McBride. A Categorical
Treatment of Ornaments. LICS 2013.

[7] Philippe de Groote. Towards Abstract Categorial Grammars. In
Assoc. for Computational Linguistics, 39th Annual Meeting, 2001.

[8] Andrzej Filinski. Monads in Action. POPL 2010.
[9] Tim Freeman and Frank Pfenning. Refinement Types for ML.

PLDI 1991.
[10] Robert Harper, Furio Honsell and Gordon Plotkin. A Framework

For Defining Logics. Journal of the ACM, 40(1):143-184, 1993.
[11] Claudio Hermida. Fibrations, Logical predicates and indeterminates,

PhD thesis, University of Edinburgh, November 1993.
[12] C.A.R. Hoare. An Axiomatic Basis for Computer Programming,

Communications of the ACM, 12:10, 1969.
[13] Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic

and the Foundations of Mathematics 141. North Holland, 1999.
[14] Shin-ya Katsumata. Relating Computational Effects by >>-

Lifting. ICALP 2011.
[15] Max Kelly. Basic concepts in enriched category theory. CUP, 1982.
[16] Joachim Lambek. The mathematics of sentence structure. Amer-

ican Mathematical Monthly, 65:3, 1958.
[17] Joachim Lambek and Philip Scott. Introduction to Higher-order

Categorical Logic. CUP, 1986.
[18] F. William Lawvere. Functorial Semantics of Algebraic Theories,

PhD thesis, Columbia University, 1963.
[19] F. William Lawvere. Adjointness in Foundations, Dialectica 23,

1969, 281–296.
[20] William Lovas. Refinement types for logical frameworks, PhD thesis,

Carnegie Mellon University, September 2010.
[21] Saunders Mac Lane. Categories for the Working Mathematician.

Springer, 1971.
[22] Conor McBride. Ornamental Algebras, Algebraic Ornaments.

JFP (to appear). 9/8/2010 version available on author’s website.
[23] Peter W. O’Hearn and David J. Pym. The Logic of Bunched

Implications. BSL 5:2, 1999.
[24] Peter W. O’Hearn and Hongseok Yang. A Semantic Basis for

Local Reasoning. FOSSACS 2002.
[25] Frank J. Oles. A Category-Theoretic Approach to the Semantics of

Programming Languages, PhD thesis, Syracuse University, 1982.
[26] Frank Pfenning. Refinement Types for Logical Frameworks.

Workshop on Types for Proofs and Programs, May 1993.
[27] Frank Pfenning. Church and Curry: Combining Intrinsic and

Extrinsic Typing. Studies in Logic 17, 2008, 303–338.
[28] John C. Reynolds. The Essence of Algol. Algorithmic Languages,

1981, 345–372.
[29] John C. Reynolds. The Coherence of Languages with Intersection

Types, TACS 1991.
[30] John C. Reynolds. Theories of Programming Languages. CUP, 1998.
[31] John C. Reynolds. The Meaning of Types: from Intrinsic to

Extrinsic Semantics. BRICS Report RS-00-32, Aarhus University,
December 2000.

[32] John C. Reynolds. Separation logic: A Logic for Shared Mutable
Data Structures. LICS 2002.

A. Proof of the Bracketing Theorem
Recall that the bracketing theorem (Thm. 32) says that the pair of judgments

∆~θ� =⇒
(id,φ[θ])

ρ[θ] =⇒
(id,ψ[θ])

∆~θ�

are derivable in the logical refinement system DRel→ Dom ×Dom. We prove this by induction on θ.

• (Case θ = fn[θ1, θ2]).
In one direction we build the following derivation:

i.h.
ρ[θ1] =⇒

(id,ψ[θ1])
∆~θ1� ∆~θ1� • ∆~θ2�

∆~θ1� =⇒
(S,S)

∆~θ2�
∆[S] i.h.

∆~θ2� =⇒
(id,φ[θ2])

ρ[θ2]

ρ[θ1] • ∆~θ2�
∆~θ1� =⇒

(S,(ψ[θ1]•id;S;φ[θ2]))
ρ[θ2]

(†)

∆~θ2�
∆~θ1� =⇒

(id,φ[θ2]ψ[θ1])
ρ[θ2]ρ[θ1]

λ

∆~θ2�
∆~θ1� =⇒

(id,(φ[θ2]ψ[θ1] ;Φf ;Ψf))
ρ[θ2]ρ[θ1]

∼

∆~θ2�
∆~θ1� =⇒

(id,(φ[θ2]ψ[θ1] ;Φf))
(id,Ψf)

∗ ρ[θ2]ρ[θ1]
R(id,Ψf)

∗

∆
�

fn[θ1, θ2]
�

=⇒
(id,φ[fn[θ1 ,θ2]])

ρ[fn[θ1, θ2]]

where at (†) we apply composition twice (the order is irrelevant by associativity), after multiplying the leftmost premise by
the identity on the right to bring it to the appropriate type.
In the other direction we build the following derivation:

(id,Ψf)
∗ ρ[θ2]ρ[θ1] =⇒

(id,Ψf)
ρ[θ2]ρ[θ1]

L(id,Ψf)
∗

i.h.
∆~θ1� =⇒

(id,φ[θ1])
ρ[θ1]

i.h.
ρ[θ2] =⇒

(id,ψ[θ2])
∆~θ1�

∆~θ1� • ρ[θ2]ρ[θ1] =⇒
(S,(φ[θ1]•id;S;ψ[θ2]))

∆~θ2�
L\

∆~θ1� • (id,Ψf)
∗ ρ[θ2]ρ[θ1] =⇒

(S,(φ[θ1]•Ψf ;S;ψ[θ2]))
∆~θ2�

(†)

(id,Ψf)
∗ ρ[θ2]ρ[θ1] =⇒

(id,(Ψf ;ψ[θ2]φ[θ1]))
∆~θ2�

∆~θ1�
λ

ρ[fn[θ1, θ2]] =⇒
(id,ψ[fn[θ1 ,θ2]])

∆
�

fn[θ1, θ2]
�

where at (†) again we multiply the leftmost premise by the identity on the left before composing, and at L\ we apply an
instance of the following rule (which is valid in any logical refinement system):

S′ =⇒
v

S U =⇒
k

U′

S′ • S \U =⇒
v•id;S;k

U′
L\

• (Case θ = int).

∆[Z⊥] =⇒
(id,id)

∆[Z⊥] id

∆[Z⊥] =⇒
(id,(Φp ;Ψp))

∆[Z⊥]
∼

∆[Z⊥] =⇒
(id,Φp)

(id,Ψp)∗ ∆[Z⊥]
R(id,Ψp)∗

∆~int� =⇒
(id,φ[int])

ρ[int]

(id,Ψp)∗ ∆[Z⊥] =⇒
(id,Ψp)

∆[Z⊥]
L(id,Ψp)∗

ρ[int] =⇒
(id,ψ[int])

∆~int�

• (Case θ = nat).

∆[N⊥] =⇒
(id,i)

(id, i) ∆[N⊥]
R(id, i)

∆[N⊥] =⇒
(id,(i;Φp ;Ψp))

(id, i) ∆[N⊥]
∼

∆[N⊥] =⇒
(id,(i;Φp))

(id,Ψp)∗ (id, i) ∆[N⊥]
R(id,Ψp)∗

∆~nat� =⇒
(id,φ[nat])

ρ[nat]

∆[N⊥] =⇒
(id,id)

∆[N⊥] id

∆[N⊥] =⇒
(id,(i;i′))

∆[N⊥]
∼

(id, i) ∆[N⊥] =⇒
(id,i′)

∆[N⊥]
L(id, i)

(id,Ψp)∗ (id, i) ∆[N⊥] =⇒
(id,(Ψp ;i′))

∆[N⊥]
L(id,Ψp)∗ ;

ρ[nat] =⇒
(id,ψ[nat])

∆~nat�

• (Case θ = bool).

∆[B⊥] =⇒
(id,id)

∆[B⊥] id

∆[B⊥] =⇒
(id,(j′ ; j))

∆[B⊥]
∼

∆[B⊥] =⇒
(id, j′)

(id, j)∗ ∆[B⊥]
R(id, j)∗

∆[B⊥] =⇒
(id,(j′ ;i))

(id, i) (id, j)∗ ∆[B⊥]
; R(id, i)

∆[B⊥] =⇒
(id,(j′ ;i;Φp ;Ψp))

(id, i) (id, j)∗ ∆[B⊥]
∼

∆[B⊥] =⇒
(id,(j′ ;i;Φp))

(id,Ψp)∗ (id, i) (id, j)∗ ∆[B⊥]
R(id,Ψp)∗

∆~bool� =⇒
(id,φ[bool])

ρ[bool]

(id, j)∗ ∆[B⊥] =⇒
(id, j)

∆[B⊥]
L(id, j)∗

(id, j)∗ ∆[B⊥] =⇒
(id,(i;i′ ; j))

∆[B⊥]
∼

(id, i) (id, j)∗ ∆[B⊥] =⇒
(id,(i′ ; j))

∆[B⊥]
L(id, i)

(id,Ψp)∗ (id, i) (id, j)∗ ∆[B⊥] =⇒
(id,(Ψp ;i′ ; j))

∆[B⊥]
L(id,Ψp)∗ ;

ρ[bool] =⇒
(id,ψ[bool])

∆~bool�

	Introduction
	Reading a functor as a refinement system
	Monoidal and logical refinement systems
	Reading Grothendieck in translation
	Separation Logic and the Frame Rule
	Reconstructing ``The Meaning of Types''
	Syntax and Typing Rules
	An Intrinsic Semantics
	An Untyped Semantics
	Logical Relations
	Bracketing

	Related work and conclusions
	Proof of the Bracketing Theorem

